
IBM Rational COBOL Runtime Guide for
zSeries
Version 6 Release 0.1

SC31-6951-06

���

IBM Rational COBOL Runtime Guide for
zSeries
Version 6 Release 0.1

SC31-6951-06

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 239.

Sixth Edition (January 2012)

This edition applies to Version 6.0.1 of IBM Rational COBOL Runtime for zSeries (product number 5655-R29) and to
all subsequent releases and modifications until otherwise indicated in new editions.

You can order publications through your IBM representative or the IBM branch office serving your locality.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 1994, 2012.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About This Document vii
Who Should Use This Document vii
Terminology Used in This Document viii

Part 1. Preparing to Install. 1

Chapter 1. Preparing for the Installation
of Rational COBOL Runtime 3

Chapter 2. Storage Requirements for
Rational COBOL Runtime 5
Virtual Storage Requirements 5
Rational COBOL Runtime Load Module Storage . . 5
Load Module Storage 5
COBOL Dynamic Storage 6
Rational COBOL Runtime Dynamic Storage 7
Storage Requirements for CICS 7
Disk Storage Requirements for Rational COBOL
Runtime 8

Work Database Space For Segmented Programs. . 8

Chapter 3. Installation Considerations . . 9
z/OS Batch Considerations 9

DL/I Considerations. 9
DB2 Considerations 9

CICS Installation Considerations 9
DL/I Considerations. 9
DB2 Considerations 10
Security Considerations 10
Monitoring and Tuning 10
CICS Utilities 10
Client / Server Processing Considerations . . . 10
Using the data Build Descriptor Option 11
Modifying CICS Resource Definitions. 11

IMS Installation Considerations. 12
IMS/ESA Exploitation 12
DB2 Considerations 12
Security Considerations 12
Monitoring and Tuning 13
IMS System Definition. 13
IMS Control Region 13
Work Database 13

Chapter 4. Customizing Rational
COBOL Runtime 15
General Customization Considerations for z/OS . . 15

Customizing Rational COBOL Runtime 15
Security Considerations 15
Performance Considerations 15
Customizing Build Scripts 16
Modifying the Language Environment Runtime
Option 16
Using Generated Programs with PL/I Programs 16

Installation and Language-Dependent Options for
z/OS 16
Creating a custom conversion table 22
Changing the EGL System Libraries to Use Your
Required Code Page 22

Part 2. Administering on z/OS
Systems 25

Chapter 5. General System
Considerations for z/OS Systems . . . 27
Considerations that Affect Performance 27

Build Descriptor and Compiler Options 27
Modules in Memory 28
Files and Databases. 28

Defining and Loading VSAM Program Data Files. . 28
Defining VSAM Data Sets 28
Loading Data in the Files 30

Support for DBCS terminals 31
Extended Addressing Considerations for Rational
COBOL Runtime 31
DB2 Considerations 32

Preparing Programs 32
Checking Access Authorization 32

Backing Up Data 32
Customizing Rational COBOL Runtime 32

Chapter 6. System Considerations for
CICS. 33
Required File Descriptions 33
Segmented and Nonsegmented Processing 34
Using Transient Data Queues for Printing in z/OS
CICS 35
z/OS CICS terminal printing 35

Special Parameter Group for the FZETPRT
Program 36
CICS Entries for FZETPRT (DBCS only) 38

Using the New Copy Function 39
Specifying Recovery Options in CICS. 39
Considerations that Affect Performance 39

Residency (Modules in Memory) Considerations 39
Work Database Temporary Storage Queue
Considerations 40
Terminal Printing 41

Using and Allocating Data Files in CICS. 41
Defining and Loading VSAM Data Files 41
Using Remote Files 43
Defining Transient Data Queues 43

Considerations for Using DB2 in CICS 45
Associating DB2 Databases with CICS
Transactions 45
Recovery and Database Integrity Considerations 45

Considerations for Using DL/I in CICS 45
Recovery and Database Integrity Considerations 45

© Copyright IBM Corp. 1994, 2012 iii

Setting up the National Language 45

Chapter 7. System Considerations for
z/OS Batch 47
Required File Descriptions 47
Using VSAM Program Data Files in z/OS Batch . . 48
Considerations for Using DB2 in z/OS Batch . . . 48

Recovery and Database Integrity Considerations 48
Considerations for Using DL/I in z/OS Batch . . . 48

Defining the Program Specification Block (PSB) 48
Recovery and Database Integrity Considerations 49

Considerations for Calling CICS programs from
z/OS batch 49
Performance Considerations for z/OS Batch . . . 49
Runtime JCL 49

Chapter 8. System Considerations for
IMS 51
Required File Descriptions 51
Defining the Program Specification Block (PSB) . . 52
Processing Modes 53
Printing Considerations for IMS 53
Recovery and Database Integrity Considerations . . 54
Considerations that Affect Performance 54

Residency Considerations and the IMS Preload
Function 54
Database Performance 56
Limiting MFS Control Blocks 56
Monitoring and Tuning the IMS System 57

Considerations for Using DB2 in IMS. 57
Recovery and Database Integrity Considerations 57
Checking Authorization 57

Considerations for Using DL/I in IMS 58
Recovery and Database Integrity Considerations 58

Maintaining the Work Database in IMS 58
Deleting Old Records from the Work Database . 58
Expanding the Work Database 60
Supporting Multiple Work Databases 63

Considerations for Message Format Services in IMS 64

Part 3. Preparing and Running
Generated Applications 69

Chapter 9. Output of Program
Generation on z/OS Systems 71
Allocating Preparation Data Sets 71
List of Program Preparation Steps after Program
Generation 73

Deploying generated code to USS 74
Output of Generation 74

Objects Generated for Programs 77
Link Edit File. 78
CICS Entries 78
Objects Generated for DataTables 78
Objects Generated for FormGroups 79

Chapter 10. z/OS Builds 81
z/OS Build Server 82

Starting a z/OS Build Server 83

Starting a USS Build Server 85
Stopping servers. 85
Configuring a build server 85

Working with Build Scripts 85
Working with z/OS Build Scripts 85
Converting JCL to Pseudo-JCL 87

Chapter 11. Preparing and Running a
Generated Program in CICS 91
Modifying CICS Resource Definitions 91

Program Entries 91
Transaction Entries 92
Destination Control Table Entries 92
File Control Table Entries 93
DB2 Entries 93
Using Remote Programs, Transactions, or Files . 93

CICS Setup for Calling CICS Programs from z/OS
Batch 93
CICS Setup for Calling z/OS Batch Programs in
CICS 93
Modifying CICS Startup JCL. 94
Making New Modules Available in the CICS
Environment 94
Making Programs Resident 95
Running Programs under CICS 95

Starting the Transaction in CICS 95
Controlling Diagnostic Information in the CICS
Environment 95
Printing Diagnostic Messages in the CICS
Environment 95

Chapter 12. Creating or Modifying
Runtime JCL on z/OS Systems 97
Tailoring JCL before Generation 97
Modifying Runtime JCL 98

Chapter 13. Preparing and Running
Generated Programs in z/OS Batch . . 101
Running Main Programs under z/OS Batch . . . 101
Examples of Runtime JCL for z/OS Batch
Programs 101

Running a Main Basic Program with No
Database Access 102
Running a Main Basic Program with DB2
Access. 102
Running Main Basic Program with DL/I Access 103
Running a Main Basic Program with DB2 and
DL/I Access 104

Recovery and Restart for z/OS Batch Programs 105

Chapter 14. Preparing and Running
Generated Programs in IMS/VS and
IMS BMP 107
Modifying the IMS System Definition Parameters 107

Defining an Interactive Program 107
Defining Parameters for a Main Basic Program
as an MPP 108
Defining Parameters for a Batch-Oriented BMP
Program 109

iv IBM Rational COBOL Runtime Guide for zSeries

Defining Parameters for a Transaction-Oriented
BMP Program 109

Creating MFS Control Blocks 109
Making New Modules Available in the IMS
Environment 110
Preloading Program, Print Services, and DataTable
Modules 110
Running Programs under IMS 111

Starting a Main Program Directly 111
Starting a Main Transaction Program Using the
/FORMAT Command 111
Running Transaction Programs as IMS MPPs 111
Running Main Basic Programs as MPPs . . . 113

Running a Main Basic Program under IMS BMP 113
Examples of Runtime JCL for IMS BMP Programs 114

Running a Main Basic Program as an IMS BMP
Program 114
Running a Main Basic Program as an IMS BMP
Program with DB2 Access 115

Recovery and Restart for IMS BMP Programs. . . 116

Chapter 15. Moving Prepared
Programs to Other Systems from z/OS
Systems 117
Moving Prepared Programs To Another z/OS
System 117
Maintaining Backup Copies of Production Libraries 118

Part 4. Utilities 119

Chapter 16. Using Rational COBOL
Runtime Utilities for z/OS CICS
Systems 121
Using the CICS Utilities Menu. 121

New Copy 122
Diagnostic Message Printing Utility 124
Diagnostic Control Options for z/OS CICS
Systems 125

Using the Parameter Group Utility for z/OS CICS
Systems 129

Chapter 17. Using Rational COBOL
Runtime Utilities for IMS Systems . . 135
IMS Diagnostic Message Print Utility 135

Part 5. Diagnosing Problems . . . 137

Chapter 18. Diagnosing Problems for
Rational COBOL Runtime on z/OS
Systems 139
Detecting Errors 139
Reporting Errors 139

Controlling Error Reporting 140
Error Reporting Summary 141
Using the Rational COBOL Runtime Error Panel 144

Printing Diagnostic Information for IMS 145
errorDestination Message Queue 145
IMS Log Format 146

Running the Diagnostic Print Utility. 147
Printing Diagnostic Information for CICS 147

CICS Diagnostic Message Layout 147
Running the Diagnostic Print Utility. 148

Analyzing Errors Detected while Running a
Program 148

Chapter 19. Finding Information in
Dumps 151
Rational COBOL Runtime ABEND Dumps . . . 151
COBOL or Subsystem ABEND Dumps 151
Information in the Rational COBOL Runtime
Control Block 152
Information in a Program, Print Services, or
DataTable Profile Block 152
How to Find the Current Position in a Program at
Time of Error 153

Chapter 20. Rational COBOL Runtime
Trace Facility 155
Enabling EGL Program Source-Level Tracing with
Build Descriptor Options 155
Activating a Trace 156

Activating a Trace Session for CICS or IMS/VS 156
Activating a Trace Session for z/OS Batch or
IMS BMP. 159

Deactivating a Trace Session 161
Printing Trace Output 161

Printing the Trace Output in CICS 161
Printing the Trace Output in IMS/VS 161
Printing the Trace Output in z/OS Batch or IMS
BMP 161

Reporting Problems for Rational COBOL Runtime 161

Chapter 21. Common Messages
during Preparation for z/OS Systems . 163
Common Abend Codes during Preparation . . . 163
MFS Generation Messages 163
DB2 Precompiler and Bind Messages 164
COBOL Compilation Messages 164

Chapter 22. Common System Error
Codes for z/OS Systems 167
Common Error Codes 167

System Error Code Formats for
sysVar.errorCode 167
Common System Error Codes in
sysVar.errorCode 170
EGL Error Codes 171

Common SQL Codes 178
Common DL/I Status Codes 180
Common VSAM Status Codes 181

OPEN request type 181
CLOSE request type 181
GET/PUT/POINT/ERASE/CHECK/ENDREQ
request types 182

COBOL Status Key Values 182

Contents v

Chapter 23. Rational COBOL Runtime
Return Codes, Abend Codes, and
Exception Codes 185
Return Codes 185
ABEND Codes 185

CICS Environments 185
IMS, IMS BMP, and z/OS Batch Environments 187
Exception Codes 188

Chapter 24. Codes from Other
Products for z/OS Systems 191
Common System Abend Codes for All
Environments 191
LE Runtime Messages 192
Common COBOL Abend Codes 193
Common IMS Runtime Messages. 193
Common IMS Runtime Abend Codes 194
Common CICS Runtime Messages 195

Common CICS Abend Codes 195
COBOL Abends under CICS 196

Part 6. Appendixes 197

Appendix. Rational COBOL Runtime
Messages 199
Message Format 199
ELA Messages 200
FZE messages 236
PRM messages 237

Notices 239
Trademarks 241

Index 243

vi IBM Rational COBOL Runtime Guide for zSeries

About This Document

This manual provides information about customizing and administering Rational
COBOL Runtime in the following environments:
v z/OS UNIX System Services (USS)
v z/OS® batch
v z/OS CICS®

v IMS/VS
v IMS™ BMP

It also provides information to enable you to prepare EGL programs for running in
the z/OS environments.

For information about Java generation and runtimes for USS, refer to the EGL
Generation Guide.

Note: Hereafter in this book, IBM® Rational COBOL Runtime for zSeries is referred
to simply as “Rational COBOL Runtime.”

Who Should Use This Document
This manual is intended for system administrators and system programmers
responsible for installing, maintaining, and administering Rational COBOL
Runtime. It provides information to complete the following tasks:
v Manage system requirements
v Manage file utilization and conflicts

This manual is also intended for use by the programmers responsible for preparing
and running EGL-generated programs. It provides information on the following
items:
v Output of the generation process
v How to prepare generated programs for running
v Error codes
v How to use Rational COBOL Runtime utilities
v How to diagnose and report problems

Attention IBM VisualAge® Generator Users
Rational COBOL Runtime provides the required components to support
development and execution of programs generated by Enterprise Generation
Language (EGL) or VisualAge Generator Developer.

To understand how VisualAge Generator Developer is used with the Rational
COBOL Runtime, refer to your VisualAge Generator documentation for
information regarding the MVS™ environment. The VAGen MVS information
also applies to the Rational COBOL Runtime when it is used in the z/OS
environment.

© Copyright IBM Corp. 1994, 2012 vii

Attention CICS Users
Refer to the CICS documentation for the level of CICS installed on your
system for detailed information regarding CICS functions and operations.

Attention IMS Users
Refer to the IMS documentation for the level of IMS installed on your system
for detailed information regarding IMS functions and operations.

Attention: Accessing EGL help
To access EGL help in the development workbench, click Help→Help
Contents from the menu bar. When the help window appears, click
Developing→Developing EGL applications.

Terminology Used in This Document
Unless otherwise noted in this publication, the following references apply:
v EGL refers to Enterprise Generation Language.
v CICS applies to Customer Information Control System.
v ELA.V6R0M1; represents the high-level qualifier used when Rational COBOL

Runtime is installed.
v “CICS region” corresponds to CICS Transaction Server region.
v IMS/VS applies to Information Management System (IMS) and IMS Transaction

Manager systems.
v IMS applies to IMS and IMS Transaction Manager, and to message processing

program (MPP), IMS Fast Path (IFP), and batch message processing (BMP)
regions. IMS/VS is used to distinguish MPP and IFP regions from the IMS BMP
target environment.

v LE refers to Language Environment®.
v Workstation applies to a personal computer, not an AIX workstation.

viii IBM Rational COBOL Runtime Guide for zSeries

Part 1. Preparing to Install

Chapter 1. Preparing for the Installation of
Rational COBOL Runtime 3

Chapter 2. Storage Requirements for Rational
COBOL Runtime. 5
Virtual Storage Requirements 5
Rational COBOL Runtime Load Module Storage . . 5
Load Module Storage 5
COBOL Dynamic Storage 6
Rational COBOL Runtime Dynamic Storage 7
Storage Requirements for CICS 7
Disk Storage Requirements for Rational COBOL
Runtime 8

Work Database Space For Segmented Programs. . 8

Chapter 3. Installation Considerations 9
z/OS Batch Considerations 9

DL/I Considerations. 9
DB2 Considerations 9

CICS Installation Considerations 9
DL/I Considerations. 9
DB2 Considerations 10
Security Considerations 10
Monitoring and Tuning 10
CICS Utilities 10
Client / Server Processing Considerations . . . 10
Using the data Build Descriptor Option 11
Modifying CICS Resource Definitions. 11

APF authorization 11
Using Spool Files 11
Terminal Considerations 11
Temporary Storage 12

IMS Installation Considerations. 12
IMS/ESA Exploitation 12
DB2 Considerations 12
Security Considerations 12
Monitoring and Tuning 13
IMS System Definition. 13
IMS Control Region 13
Work Database 13

DL/I Work Database Considerations 13
DB2 Work Database Considerations 13

Chapter 4. Customizing Rational COBOL
Runtime 15
General Customization Considerations for z/OS . . 15

Customizing Rational COBOL Runtime 15
Security Considerations 15
Performance Considerations 15
Customizing Build Scripts 16
Modifying the Language Environment Runtime
Option 16
Using Generated Programs with PL/I Programs 16
Installation and Language-Dependent Options for
z/OS 16

Creating a custom conversion table 22
Changing the EGL System Libraries to Use Your
Required Code Page 22

© Copyright IBM Corp. 1994, 2012 1

2 IBM Rational COBOL Runtime Guide for zSeries

Chapter 1. Preparing for the Installation of Rational COBOL
Runtime

After selecting the production environments, do the following to prepare for the
installation of the Rational COBOL Runtime:
v Obtain a copy of the Program Directory for Rational COBOL Runtime for zSeries

(GI10-3377-00) (shipped with the product's installation materials).
v Determine the hardware, software, and storage requirements for the production

environments selected.
v Install the hardware and software required by the Rational COBOL Runtime.
v Collect information before customization.
v Understand specific environment considerations before defining applications.

Before continuing with the current document, access the product website for
details on product updates and prerequisites:

http://www.ibm.com/developerworks/rational/products/rbde/

Copies of documents are also available from the IBM Publications Center:

http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss

There is also an EGL website and news group for EGL. The website is as at the
following address:

http://www.ibm.com/software/rational/cafe/community/egl/

© Copyright IBM Corp. 1994, 2012 3

4 IBM Rational COBOL Runtime Guide for zSeries

Chapter 2. Storage Requirements for Rational COBOL
Runtime

The following sections give approximate estimates of Rational COBOL Runtime
storage use by type of storage.

Virtual Storage Requirements
A program requires virtual storage for the following:
v Rational COBOL Runtime load modules
v Application load modules
v COBOL dynamic area
v Rational COBOL Runtime dynamic area

CICS programs also use specialized CICS storage facilities.

Rational COBOL Runtime Load Module Storage
Most of the modules in the runtime function are not linked with the generated
programs. Only one copy of these modules needs to be available for use by all
programs generated with Enterprise Generation Language (EGL).

For z/OS, these modules can be in a library (STEPLIB or DFHRPL), or placed in
the link pack area (LPA). For CICS, you might want to make the modules resident.
For IMS, you might want to preload the modules. Refer to the Rational COBOL
Runtime program directory for a list of LPA eligible load modules.

Table 1. Rational COBOL Runtime Reentrant Load Module Storage Estimates

Function Size RMODE

CICS base services 240 KB ANY

CICS base services, 24-bit addressing mode 8 KB 24

IMS/VS, IMS BMP, z/OS batch base services 255 KB ANY

IMS/VS, IMS BMP, z/OS batch base services, 24-bit
addressing mode

10 KB 24

Double-byte language ASCII/EBCDIC code
conversion tables

Chinese - 50 KB ANY

Load Module Storage
Load module storage is the storage required for generated COBOL programs. The
load modules are created by link-editing the generated COBOL programs produced
by EGL's COBOL generation facility. The size of the load module can be
determined from the linkage editor module map. The size varies depending on the
functions utilized with the programs.

The load module storage includes all generated programs, DataTable programs,
FormGroup format modules, and print services programs used by a batch job step
or transaction. The size of a load module also includes the small Rational COBOL
Runtime programs that are statically linked with the programs. The load modules

© Copyright IBM Corp. 1994, 2012 5

produced by link-editing the generated programs are reentrant. Each module can
be linked with RMODE(ANY) so that the load module can reside in extended
storage.

The size of the Rational COBOL Runtime modules linked with each generated
program, print services program, or DataTable program is shown in Table 2. These
estimates should be added to the application load module size to determine the
overall load module size.

Table 2. Rational COBOL Runtime Statically Linked Module Storage Estimates

Environment Application
Print service

program
DataTable

program

CICS 2.5 KB 1 KB 1 KB

IMS/VS 1 KB 1 KB 1 KB

z/OS batch and IMS BMP 1.3 KB 1 KB 1 KB

Note: Rational COBOL Runtime modules are not statically linked with a FormGroup format
module.

COBOL Dynamic Storage
Application load modules acquire dynamic storage while they are running. The
COBOL runtime library requires this storage for application data structures such as
records, forms, and DataTables. The storage includes both the internal and external
data structures.

The COBOL data build descriptor option determines whether to acquire storage
below the 16 MB line. The procedures shipped with the Rational COBOL Runtime
enable data build descriptor option to control the value for the COBOL DATA
compiler option. The default value of that build descriptor option is 31. Set data to
24 if an application calls another application or program that is linked as
AMODE(24). DataTable program and print services programs must also use
data="24" if any program being used is linked AMODE(24).

When you generate z/OS batch or CICS programs with dynamic storage
requirements greater than 64 KB, the value data=31 is required.

The amount of storage required for internal data structures is listed in the compile
listing of the COBOL application when the MAP, OFFSET, or LIST compiler
options are used.

Applications that run outside of CICS use COBOL external data structures to share
information between applications in the same run unit. The following table shows
the storage estimates for external data structures.

Table 3. COBOL External Storage Utilization in Non-CICS Environments

Function Storage Required

Rational COBOL Runtime control block 1KB

Environment is IMS/VS or IMS BMP 32 KB

IMS conversational processing SPA size plus 18
bytes

File type SEQ, VSAM, GSAM, SMSGQ, MMSGQ or EZEPRINT SEQ,
GSAM

96 bytes/file

6 IBM Rational COBOL Runtime Guide for zSeries

Rational COBOL Runtime Dynamic Storage
When applications are running, Rational COBOL Runtime allocates storage as
shown in Table 4. The initial program of the run unit determines where the shared
storage between Rational COBOL Runtime and the generated COBOL program is
allocated. If the initial program is generated with the data build descriptor option
set to 24 or is link-edited with AMODE(24), this storage is allocated below the 16
MB line. Otherwise, the storage is allocated with 31-bit addresses as shown in the
following table:

Table 4. Rational COBOL Runtime Dynamic Storage Utilization

Function Storage Required
24- or 31-bit

Addressing mode

Persistent dynamic storage pool. The pool is
extended as needed in 32 KB increments.
Most transactions or jobs require only the
initial allocation. Segmented transactions in
CICS or using a DB2® work database in IMS
might require an extension.

32 KB increment 31

CICS - service program dynamic storage
stack

48 KB 31

CICS with DL/I - DL/I buffers 64 KB 31

IMS/VS, IMS BMP, z/OS batch - service
program dynamic storage stack

48 KB 24

IMS VS - DL/I buffers for path calls and
DL/I work database

64 KB based on data build
descriptor option

IMS BMP - DL/I buffers for path calls and
checkpoint input

96 KB based on data build
descriptor option

z/OS batch - DL/I buffers for path calls 64 KB based on data build
descriptor option

z/OS batch 64 KB 24

Storage Requirements for CICS
Generated COBOL applications use the following CICS storage facilities:

Table 5. Rational COBOL Runtime Use of CICS Storage Areas

Type of Storage Function Size

Transaction Work Area
(TWA)

Rational COBOL Runtime
Control Block. Offset in TWA is
specified in twaOffset build
descriptor option.

1 KB

COMMAREA Calls using COMMPTR 4 times the number of
parameters

COMMAREA Calls using COMMDATA Total length of all
parameters

COMMAREA Remote calls Total length of all
parameters, plus 12

COMMAREA transfer to program that passes
a record

Length of record passed

COMMAREA transfer to transaction or show
statement that passes a record

Length of record passed
plus 10

Chapter 2. Storage Requirements for Rational COBOL Runtime 7

Table 5. Rational COBOL Runtime Use of CICS Storage Areas (continued)

Type of Storage Function Size

Shared storage Shared DataTable contents,
Shared DataTable control block

For each DataTable, length
of DataTable contents plus:

v 16 bytes for a message
table

v 8 bytes for other tables

Also, one 50-byte record
per shared DataTable.

Temporary storage queue
(main or auxiliary)

Save information during
converse or show statement

6 KB plus the length of all
records and forms

Disk Storage Requirements for Rational COBOL Runtime
The auxiliary disk storage space required to install files for the Rational COBOL
Runtime is approximately 2 MB. Additional disk space for user programs can vary.

Work Database Space For Segmented Programs
The space required for saving program status across a terminal I/O operation in
CICS is the sum of all data areas (forms and records) for all segmented programs
plus 6 KB per program. In CICS, disk space is used only if auxiliary temporary
storage is specified as the work database during program generation.

The space required for saving program status across a terminal I/O operation in
IMS/VS is the sum of the data areas (forms and records) for all segmented
programs plus 4 KB per program.

For example, suppose that program A has the following:
v Two 4 KB records
v Two 512-byte forms
v 1 KB of working storage
v 100 terminals running application A in segmented mode

For CICS, the approximate required disk space is as follows:

(2 x 4 096 + 2 x 512 + 1 024 + 6 144) x 100 = 1 638 400

For IMS/VS, the approximate required disk space is

(2 x 4 096 + 2 x 512 + 1 024 + 4 096) x 100 = 1 433 600

If you are using a DL/I work database with IMS/VS, the storage required per
terminal is inserted in 56 KB increments to localize access for all segments accessed
on a single-path call. An additional 56 KB increment is required when help forms
or extended error screens are used. A good estimate for work database size is 112
KB per active terminal.

8 IBM Rational COBOL Runtime Guide for zSeries

Chapter 3. Installation Considerations

The following sections describe installation considerations for the Rational COBOL
Runtime.

z/OS Batch Considerations
This section discusses some general considerations when installing EGL-generated
programs in the z/OS batch environment.

DL/I Considerations
If the installation has programs that use DL/I databases, follow these steps:
1. Install the correct version of IMS. For more information on the correct version

of IMS, see Program Directory for Rational COBOL Runtime for zSeries. This
publication comes with the product or can be accessed from the IBM
Publications Center at www.elink.ibmlink.ibm.com/public/applications/
publications/cgibin/pbi.cgi.

2. Define databases and PSBs to IMS as described in the IMS utilities reference
document.

3. Follow the optional DL/I-related steps for Rational COBOL Runtime
installation as described in the Program Directory for Rational COBOL Runtime for
zSeries.

DB2 Considerations
If the installation has programs that use relational databases, do the following:
1. Install the correct version of DB2. For more information on the correct version

of DB2, see Program Directory for Rational COBOL Runtime for zSeries. This
publication comes with the product or can be accessed from the IBM
Publications Center at www.elink.ibmlink.ibm.com/public/applications/
publications/cgibin/pbi.cgi.

2. Create the tables in the relational database that the programs will access.
3. Follow the optional DB2-related steps for Rational COBOL Runtime installation

as described in the Program Directory for Rational COBOL Runtime for zSeries.
4. Define DB2 plans or packages as described in the DB2 installation and

operation guides.

CICS Installation Considerations
This section discusses some general considerations when installing EGL-generated
programs in the CICS environment.

DL/I Considerations
If the installation has programs that gain access to DL/I databases, you must do
the following:
1. Install the correct version of IMS. For more information on the correct version

of IMS, see Program Directory for Rational COBOL Runtime for zSeries. This
publication comes with the product or can be accessed from the IBM
Publications Center at www.elink.ibmlink.ibm.com/public/applications/
publications/cgibin/pbi.cgi.

© Copyright IBM Corp. 1994, 2012 9

2. Define databases and PSBs to IMS as described in the IMS utilities reference
document.

3. Follow the optional DL/I-related steps for Rational COBOL Runtime
installation as described in the Program Directory for Rational COBOL Runtime for
zSeries.

4. Add DL/I support to CICS and define databases and PSBs to CICS as
described in the resource definition and installation and operation guides or in
the IMS database control guide.

DB2 Considerations
If the installation has programs that gain access to relational databases, do the
following:
1. Install the correct version of DB2. For more information on the correct version

of DB2, see Program Directory for Rational COBOL Runtime for zSeries. This
publication comes with the product or can be accessed from the IBM
Publications Center at www.elink.ibmlink.ibm.com/public/applications/
publications/cgibin/pbi.cgi.

2. Create the tables in the relational database that the programs use.
3. Follow the optional DB2-related steps for Rational COBOL Runtime installation

as described in the Program Directory for Rational COBOL Runtime for zSeries.
4. Add DB2 support to CICS and define DB2 plans or packages to CICS as

described in the DB2 system administration guides.

Security Considerations
CICS provides access control to resources (such as data files and programs) and
transactions. This access can be controlled by the user or by the terminal.

CICS resources (such as data files, programs, destinations, journals, and temporary
storage) can be assigned a security lock value. CICS users are assigned one or
more key values. If a user is running a CICS transaction that is defined for
resource security checking, the user’s keys are checked every time a resource is
requested. If the user does not have a key that matches the lock, access is denied
by ending the transaction with an AEY7 ABEND code.

Monitoring and Tuning
Use CICS monitoring facilities to get information about CICS tasks.

Refer to the performance guide for your release of CICS for more information.

CICS Utilities
In the CICS environment, the Rational COBOL Runtime includes a set of utilities to
assist in managing the error diagnosis and control facilities of the Rational COBOL
Runtime environment. These utilities are EGL COBOL programs. See “Using the
CICS Utilities Menu” on page 121 for more information about these utilities.

Client / Server Processing Considerations
EGL programs can use the benefits of client / server processing in the CICS
environment. Client / server programs are developed like any other EGL program.
Client / server processing is built on the call, vgLib.startTransaction(), and file
I/O statements. You can define a program so that it calls a program on a remote
CICS system. In addition, if the runtime environment is CICS, you can define a
program so that it starts an asynchronous transaction on a remote CICS system or

10 IBM Rational COBOL Runtime Guide for zSeries

gains access to a file on a remote CICS system. Refer to the callLink, asynchLink,
and fileLink elements of linkage options part in the EGL Generation Guide for
additional information about remote calls, remote asynchronous transactions, and
remote file access.

Using the data Build Descriptor Option
Set the data build descriptor option to 24 on generated COBOL programs to enable
calls from the generated program to programs using 24-bit addresses, as long as
the length of the COBOL dynamic storage (as defined in the COBOL
working-storage section) required for the application is less than 64 KB. Programs
whose dynamic storage requirements are greater than 64 KB must be compiled
with the data build descriptor option set to 31. Otherwise, COBOL ends the
program with a 1009 ABEND code.

Note: The build scripts and procedures shipped with the Rational COBOL
Runtime enables the data build descriptor option to control the value for the
COBOL DATA compiler option. The data build descriptor option is set to 31
as the default for the CICS environment.

Modifying CICS Resource Definitions
CICS uses resource definitions to identify startup parameters, transactions,
programs, files, databases, transient data destinations, and system locations for
proper operation. The application developer must add or modify these definitions
to correctly identify all objects to be used in the new or changed application.

To generate model resource definition online (RDO) program and transaction
definitions, specify the cicsEntries build descriptor option with a value of RDO.

The CICS system initialization table needs to include EXEC=YES.

Add any transaction that invokes a program that uses DB2 to the resource control
table (RCT) with the appropriate plan name. You can also use a resource definition.

APF authorization
For CICS environments, EGL Version 7 and above, you must add the distributed
SELALMD load library to both the STEPLIB and the DFHRPL DD statement
concatenation. This addition is needed because of the introduction of the new heap
memory management modules. These new modules are loaded and run during an
operating system call instead of an EXEC CICS call, which means they must be
obtained from STEPLIB. Because you are adding these new memory management
modules to STEPLIB, the SELALMD load library must become APF authorized; all
STEPLIB load libraries must have this authorization. No special logic exists in
SELALMD that requires APF authorization for its own sake.

Using Spool Files
To use the spool files, include the SPOOL=YES parameter in the System
Initialization Table (SIT).

Terminal Considerations
Terminals used with EGL must have their alternate screen size either specified
correctly in the alternate screen parameter of the TYPETERM definition, or omitted
so the default of the primary screen size is used. An alternate screen size
specification of (0,0) is not valid.

Chapter 3. Installation Considerations 11

Any terminal defined as UCTRAN=YES in the TYPETERM definition and used for
running pseudoconversational transactions might give different results than a
terminal that is defined without UCTRAN=YES.

Any terminal used in a program that is the target of a transfer to transaction
statement must have ATI=YES and TTI=YES specified in the TYPETERM
definition.

Temporary Storage
Temporary storage queues used by the Rational COBOL Runtime must be defined
as nonrecoverable. These queues start with X'EE'.

IMS Installation Considerations
This section discusses some general considerations when installing EGL-generated
programs in the IMS environment.

IMS/ESA Exploitation
The build scripts shipped with the Rational COBOL Runtime cause the generated
COBOL programs to be compiled with the data="31" build descriptor option and
linked in AMODE(31) and RMODE(ANY). If the program calls another program
that is linked with AMODE(24), then the data="24" build descriptor option is
required.

You can link the generated COBOL program to run below the 24-bit line. However,
if AMODE(24) is used to link the program, you must use the data="24" build
descriptor option for the following situations:
v For a program that calls another program that is linked as AMODE(24)
v For the first program in the run unit, if any generated program in the run unit is

linked as AMODE(24) or if a non-EGL program that uses DL/I is linked as
AMODE(24)

v For a table or form services program, if any program being used is linked as
AMODE(24)

DB2 Considerations
If the installation has programs that gain access to relational databases, do the
following:
1. Install the correct version of DB2. For more information on the correct version

of DB2, see Program Directory for Rational COBOL Runtime for zSeries. This
publication comes with the product or can be accessed from the IBM
Publications Center at www.elink.ibmlink.ibm.com/public/applications/
publications/cgibin/pbi.cgi.

2. Create the tables in the relational database that the programs will access.
3. Follow the optional DB2-related steps for Rational COBOL Runtime installation

as described in the Program Directory for Rational COBOL Runtime for zSeries.
4. Add DB2 support to IMS and define DB2 plans or packages to IMS as

described in the DB2 system administration guide.

Security Considerations
Resource Access Control Facility (RACF®) can be used to control users authority to
each transaction.

12 IBM Rational COBOL Runtime Guide for zSeries

Monitoring and Tuning
Potential performance problems can be tracked before they occur by checking
processing statistics on a regular basis. The following are some of the statistics to
monitor:
v Use the IMS monitor facilities to check transaction utilization. Consider

preloading applications or groups of applications that are frequently used.
v Use the IMS database monitor facilities to check how effectively the databases

are performing and using space.

Refer to the IMS system administration document and the database administration
guide for the release of IMS for additional information on monitoring the IMS
online system and DL/I databases.

IMS System Definition
If you plan to use IMS, define all PSBs and transactions in the IMS system
definition. In addition, define DL/I application databases.

IMS Control Region
You might need to review the values for the following:
v PSB work area pool (PSBW parameter)
v FORMAT pool (FBP parameter)
v MFS test area (MFS parameter)
v Communications input/output area (TPDP parameter)

In addition, if a DL/I work database is used, the work database must be added to
either the control region JCL or to the dynamic allocation table.

Work Database
The work database is used to save the status of an EGL program during a
converse statement, and to pass information during certain types of
program-to-program message switches. The work database can be either a DL/I
database or a DB2 table. The application developer specifies the workDBType
build descriptor option when generating a program to determine which type of
database is to be used. A DL/I or DB2 work database is used only for Rational
COBOL transaction applications that are generated for the IMS/VS target
environment. In general, a DL/I work database performs better than a DB/2 work
database.

Multiple DL/I or DB2 work databases can be installed. Use separate databases for
each application system to improve performance or data availability.

DL/I Work Database Considerations
If you plan to use a DL/I implementation for the work database, you might need
to tailor the database description (DBD) before running the job that creates and
initializes the DL/I work database.

DB2 Work Database Considerations
If you plan to use a DB2 implementation for the work database, review the
database definition before running the job that initializes the DB2 work database. A
DB2 synonym needs to be created for each user and program gaining access to the
DB2 work database.

The DB2 work database requires a 32 KB page size. If a DB2 work database is
used, you might need to increase the allocation of the 32 KB buffers. To increase

Chapter 3. Installation Considerations 13

the allocation of buffers, modify and assemble the DB2 parameter module (default
is DSNZPARM). Refer to the DB2 documents for the system for additional
information.

If you select DB2, a DB2 plan for each transaction is needed even if the EGL
program itself does not require DB2.

If you select DB2 and if the Rational COBOL Runtime needs maintenance applied
to the module that handles the DB2 work database access, bind the DB2 plans
again for all transactions that use this database.

There are also considerations with the DB2 authorization used by the IMS program
that is gaining access to the DB2 work database. For example, authorization needs
to be granted to LTERM and a synonym needs to be created.

14 IBM Rational COBOL Runtime Guide for zSeries

Chapter 4. Customizing Rational COBOL Runtime

Before starting the customization process, determine the following:
v The target environments that application developers specify during generation
v Whether the programs use relational databases, hierarchical databases, or both.
v The IMS work database and terminal types
v The national language support requirements

General Customization Considerations for z/OS
The following sections discuss some general considerations for running
EGL-generated programs in the supported z/OS environments.

Customizing Rational COBOL Runtime
Customizing Rational COBOL Runtime consists of performing some of the same
procedures used to install the product on the system. These procedures are
described in the Program Directory for Rational COBOL Runtime for zSeries.

Security Considerations
The Rational COBOL Runtime does not provide security services. Standard system
or database manager security functions can be used with generated COBOL
programs in the same way that they are used with customer-developed COBOL
programs.

For example, if the EGL programs use DB2, define DB2 plans and give run
authority to those users that are authorized to use the programs associated with
the plan. The Resource Access Control Facility (RACF) can also be used to grant
users authority to read or update files.

Performance Considerations
Other chapters in this book provide detailed information on considerations that
affect performance. See the following chapters for information on these
performance-related topics and others:

Performance Topic Where to Find Info

Build descriptor options v Chapter 5, “General System Considerations
for z/OS Systems,” on page 27

Placing Rational COBOL Runtime product
and generated application modules in
memory

v Chapter 5, “General System Considerations
for z/OS Systems,” on page 27

Residency and work-database considerations v Chapter 6, “System Considerations for
CICS,” on page 33

v Chapter 8, “System Considerations for
IMS,” on page 51

Monitoring and tuning tools v Chapter 6, “System Considerations for
CICS,” on page 33

v Chapter 8, “System Considerations for
IMS,” on page 51

© Copyright IBM Corp. 1994, 2012 15

Customizing Build Scripts
The Rational COBOL Runtime includes build scripts used for preparing generated
programs for running. These build scripts can be customized to meet any data set
naming conventions. Refer to the EGL Generation Guide for additional information.

Modifying the Language Environment Runtime Option
In the non-CICS environments, generated COBOL programs rely on COBOL
working storage being initialized to binary zeros to determine whether COBOL
Runtime is initialized. For Language Environment (LE), this is done by specifying
STORAGE=((00)) in the CEEDOPT CSECT.

The modified runtime options modules must be in a library allocated to the
STEPLIB or placed in the link pack area or in a library managed by the Virtual
Lookaside Facility and Library Lookaside features of z/OS for each non-CICS
z/OS environment. If those modules are in a separate library, the library must
precede the library that contains the unmodified modules.

Alternatively, these options can be set for each program by creating a CEEUOPT
load module with these options set as listed above and link-editing this modoule
with each generated COBOL program. Refer to the Language Environment
documentation for more information on creating and using a CEEUOPT module to
set runtime options.

Using Generated Programs with PL/I Programs
If PL/I programs are used with generated COBOL programs in a non-CICS
environment, you must generate the COBOL program to invoke the PL/I program
using a static COBOL call. This requires the PL/I programs to be linked with the
COBOL program in the same load module.

If PL/I programs are used with generated COBOL programs in the CICS
environment, you must generate the COBOL program to call the PL/I program
using the CICS LINK command. This is the default linkage for the CICS
environment. The calling and called programs must not be linked together for the
CICS environment.

Refer to the EGL Generation Guide for additional information.

Installation and Language-Dependent Options for z/OS
The following are the installation options required for z/OS. To change the
defaults, use the steps outlined in the Program Directory for Rational COBOL
Runtime for zSeries (GI10-3377-00) to specify new settings. This document also
provides instructions on customizing the Runtime Default Options and Language
Dependent Options.

Table 6. Installation options for z/OS

Question Default Your Selection

Rational COBOL Runtime Default
Options

Default language code ENU _____________

Bypass date edit on EOF NO _____________

IMS/ESA® installed NO _____________

16 IBM Rational COBOL Runtime Guide for zSeries

Table 6. Installation options for z/OS (continued)

Question Default Your Selection

Rational COBOL Runtime trace buffer
size

64 _____________

CICS temporary storage control interval
size

16 _____________

The next table lists the national languages that are supported for these purposes:
v To present Rational COBOL Runtime messages on zSeries
v To present program-specific user messages based on the EGL msgTablePrefix

property.

The code page for the language you specify must be loaded on your target
platform.

Table 7. National language codes

Code Languages

CHS Simplified Chinese

CHT Traditional Chinese

DES Swiss German (for programs generated with
VisualAge Generator)

DEU German

ENP Uppercase English (for programs generated
with VisualAge Generator)

ENU US English

ESP Spanish

FRA French

ITA Italian

JPN Japanese

KOR Korean

PTB Brazilian Portuguese

The following are the language-dependent options required for z/OS. One code is
needed for each national language you install. The default values vary for each
language.

Table 8. Rational COBOL Runtime National Language Dependent options for z/OS

Question Default Your Selection

National language code (US English) ENU _____________

Long Gregorian date format MM/DD/YYYY _____________

Short Gregorian date format MM/DD/YY _____________

Long Julian date format YYYY-DDD _____________

Short Julian date format YY-DDD _____________

Conversion table name ELACNENU _____________

Positive response character string YES _____________

Chapter 4. Customizing Rational COBOL Runtime 17

Table 8. Rational COBOL Runtime National Language Dependent options for z/OS (continued)

Question Default Your Selection

Negative response character string NO _____________

Decimal point character* . _____________

Numeric separator character* , _____________

Currency symbol $ _____________

SQL host variable indicator : _____________

SQL host column indicator ! _____________

National language code (Simplified Chinese) CHS _____________

Long Gregorian date format YYYY-MM-DD _____________

Short Gregorian date format YY-MM-DD _____________

Long Julian date format YYYY-DDD _____________

Short Julian date format YY-DDD _____________

Conversion table name ELACNCHS _____________

Positive response character string YES _____________

Negative response character string NO _____________

Decimal point character* . _____________

Numeric separator character* , _____________

Currency symbol $ _____________

SQL host variable indicator : _____________

SQL host column indicator ! _____________

National language code (Traditional Chinese) CHT _____________

Long Gregorian date format YYYY-MM-DD _____________

Short Gregorian date format YY/MM/DD _____________

Long Julian date format YYYY-DDD _____________

Short Julian date format YY-DDD _____________

Conversion table name ELACNCHT _____________

Positive response character string YES _____________

Negative response character string NO _____________

Decimal point character* . _____________

Numeric separator character* , _____________

Currency symbol $ _____________

SQL host variable indicator : _____________

SQL host column indicator ! _____________

National language code (Swiss German) DES _____________

Long Gregorian date format DD.MM.YYYY _____________

18 IBM Rational COBOL Runtime Guide for zSeries

Table 8. Rational COBOL Runtime National Language Dependent options for z/OS (continued)

Question Default Your Selection

Short Gregorian date format DD.MM.YY _____________

Long Julian date format YYYY.DDD _____________

Short Julian date format YY.DDD _____________

Conversion table name ELACNDES _____________

Positive response character string YES _____________

Negative response character string NO _____________

Decimal point character* , _____________

Numeric separator character* . _____________

Currency symbol $ _____________

SQL host variable indicator : _____________

SQL host column indicator ! _____________

National language code (German) DEU _____________

Long Gregorian date format DD.MM.YYYY _____________

Short Gregorian date format DD.MM.YY _____________

Long Julian date format DDD/YYYY _____________

Short Julian date format DDD/YY _____________

Conversion table name ELACNDEU _____________

Positive response character string YES _____________

Negative response character string NO _____________

Decimal point character* , _____________

Numeric separator character* . _____________

Currency symbol $ _____________

SQL host variable indicator : _____________

SQL host column indicator ! _____________

National language code (US English Upper Case) ENP _____________

Long Gregorian date format MM/DD/YYYY _____________

Short Gregorian date format MM/DD/YY _____________

Long Julian date format YYYY-DDD _____________

Short Julian date format YY-DDD _____________

Conversion table name ELACNENP _____________

Positive response character string YES _____________

Negative response character string NO _____________

Decimal point character* . _____________

Numeric separator character* , _____________

Chapter 4. Customizing Rational COBOL Runtime 19

Table 8. Rational COBOL Runtime National Language Dependent options for z/OS (continued)

Question Default Your Selection

Currency symbol $ _____________

SQL host variable indicator : _____________

SQL host column indicator ! _____________

National language code (Spanish) ESP _____________

Long Gregorian date format DD/MM/YYYY _____________

Short Gregorian date format DD/MM/YY _____________

Long Julian date format DDD/YYY _____________

Short Julian date format DDD/YY _____________

Conversion table name ELACNESP _____________

Positive response character string SI _____________

Negative response character string NO _____________

Decimal point character* , _____________

Numeric separator character* . _____________

Currency symbol $ _____________

SQL host variable indicator : _____________

SQL host column indicator ! _____________

National language code (French) FRA _____________

Long Gregorian date format MM/DD/YYYY _____________

Short Gregorian date format MM/DD/YY _____________

Long Julian date format DDD/YYYY _____________

Short Julian date format DDD/YY _____________

Conversion table name ELACNFRA _____________

Positive response character string OUI _____________

Negative response character string NAN _____________

Decimal point character* , _____________

Numeric separator character* . _____________

Currency symbol $ _____________

SQL host variable indicator : _____________

SQL host column indicator ! _____________

National language code (Italian) ITA _____________

Long Gregorian date format MM/DD/YYYY _____________

Short Gregorian date format MM/DD/YY _____________

Long Julian date format DDD/YYYY _____________

Short Julian date format DDD/YY _____________

20 IBM Rational COBOL Runtime Guide for zSeries

Table 8. Rational COBOL Runtime National Language Dependent options for z/OS (continued)

Question Default Your Selection

Conversion table name ELACNITA _____________

Positive response character string SI _____________

Negative response character string NO _____________

Decimal point character* , _____________

Numeric separator character* . _____________

Currency symbol $ _____________

SQL host variable indicator : _____________

SQL host column indicator ! _____________

National language code (Japanese) JPN _____________

Long Gregorian date format YYY-MM-DD _____________

Short Gregorian date format YY-MM-DD _____________

Long Julian date format YYYY-DDD _____________

Short Julian date format YY-DDD _____________

Conversion table name ELACNJPN _____________

Positive response character string YES _____________

Negative response character string NO _____________

Decimal point character* . _____________

Numeric separator character* , _____________

Currency symbol $ _____________

SQL host variable indicator : _____________

SQL host column indicator ! _____________

National language code (Korean) KOR _____________

Long Gregorian date format MM/DD/YYYY _____________

Short Gregorian date format MM/DD/YY _____________

Long Julian date format DDD/YYYY _____________

Short Julian date format DDD/YY _____________

Conversion table name ELACNKOR _____________

Positive response character string YES _____________

Negative response character string NO _____________

Decimal point character* . _____________

Numeric separator character* , _____________

Currency symbol $ _____________

SQL host variable indicator : _____________

SQL host column indicator ! _____________

Chapter 4. Customizing Rational COBOL Runtime 21

Table 8. Rational COBOL Runtime National Language Dependent options for z/OS (continued)

Question Default Your Selection

National language code (Brazilian Portuguese) PTB _____________

Long Gregorian date format DD/MM/YYYY _____________

Short Gregorian date format DD/MM/YY _____________

Long Julian date format DDD/YYYY _____________

Short Julian date format DDD/YY _____________

Conversion table name ELACNPTB _____________

Positive response character string SIM _____________

Negative response character string NAO _____________

Decimal point character* , _____________

Numeric separator character* . _____________

Currency symbol $ _____________

SQL host variable indicator : _____________

SQL host column indicator ! _____________

* Decimal point and separator characters are determined by the decimalSymbol
and separatorSymbol build descriptor options. In EGL programs that you generate
for COBOL that do not use print forms, the default values for these options come
from the language-dependent options module specified for your runtime
installation. However, if you use print forms, the default value for the
decimalSymbol option is a period, and the default value for the separatorSymbol
option is a comma. If these values are not appropriate to your location, you must
explicitly set these build descriptor options.

Upper case English (ENP) is also supported. It has the same defaults as ENU,
except the conversion table name is ELACNENP.

Creating a custom conversion table
You might need a custom conversion table when your environment has minor
differences from the environment for which a standard table was created.
1. Find the existing conversion table that is closest to your needs. For example,

the ELACNCHS is used for simplified Chinese.
2. Make corrections to the file. The source is located in the AELASAMP library.
3. Assemble and link edit the module. A sample JCL to do this is in member

ELACVPLK in the AELASAMP library.

Changing the EGL System Libraries to Use Your Required
Code Page

The EGL runtime comes with 11 precompiled system library programs. These
programs are written in COBOL and because they are distributed precompiled,
they are using, by default, the English code page for any character to/from
UNICODE transformations. This might not be acceptable for many users, and there
is a way to alter this so that the runtime will use the code page that you require
instead.

22 IBM Rational COBOL Runtime Guide for zSeries

Each time a system library needs to perform a transformation between character
and UNICODE, it calls a runtime program called EZEUCDE. This EZEUCDE
program is written in COBOL and does any transformations using the COBOL
intrinsic functions NATIONAL-OF and DISPLAY-OF. The source of EZEUCDE has
been provided to you and is in your SELASAMP dataset. To alter this program so
that it uses your required code page instead, all that needs to be done is for the
source code to be recompiled with your code page specified in the COBOL
parameters, and the resulting load module to either replace the EZEUCDE load
module in the SELALMD dataset, or be placed in any dataset that will be ahead of
SELALMD in the DD concatenation order. Sample JCL for this recompilation is
available in your SELASAMP dataset, under the member name EZEUCDEJ.

Chapter 4. Customizing Rational COBOL Runtime 23

24 IBM Rational COBOL Runtime Guide for zSeries

Part 2. Administering on z/OS Systems

Chapter 5. General System Considerations for
z/OS Systems 27
Considerations that Affect Performance 27

Build Descriptor and Compiler Options 27
Modules in Memory 28
Files and Databases. 28

Defining and Loading VSAM Program Data Files. . 28
Defining VSAM Data Sets 28

Defining an Alternate Index 29
Loading Data in the Files 30

Support for DBCS terminals 31
Extended Addressing Considerations for Rational
COBOL Runtime 31
DB2 Considerations 32

Preparing Programs 32
Checking Access Authorization 32

Backing Up Data 32
Customizing Rational COBOL Runtime 32

Chapter 6. System Considerations for CICS . . 33
Required File Descriptions 33
Segmented and Nonsegmented Processing 34
Using Transient Data Queues for Printing in z/OS
CICS 35
z/OS CICS terminal printing 35

Special Parameter Group for the FZETPRT
Program 36

PRTBUF Parameter 37
PRTMPP Parameter. 37
PRTTYP Parameter 38
FORMFD Parameter 38

CICS Entries for FZETPRT (DBCS only) 38
Using the New Copy Function 39
Specifying Recovery Options in CICS. 39
Considerations that Affect Performance 39

Residency (Modules in Memory) Considerations 39
Virtual Storage Considerations and Residency 40

Work Database Temporary Storage Queue
Considerations 40
Terminal Printing 41

Using and Allocating Data Files in CICS. 41
Defining and Loading VSAM Data Files 41

Adding the Job Control Statements 41
Adding a CICS FILE Resource Definition for a
File 42

Using Remote Files 43
Defining Transient Data Queues 43

Defining Intrapartition Transient Data . . . 44
Defining Extrapartition Transient Data . . . 44

Considerations for Using DB2 in CICS 45
Associating DB2 Databases with CICS
Transactions 45
Recovery and Database Integrity Considerations 45

Considerations for Using DL/I in CICS 45
Recovery and Database Integrity Considerations 45

Setting up the National Language 45

Chapter 7. System Considerations for z/OS
Batch 47
Required File Descriptions 47
Using VSAM Program Data Files in z/OS Batch . . 48
Considerations for Using DB2 in z/OS Batch . . . 48

Recovery and Database Integrity Considerations 48
Considerations for Using DL/I in z/OS Batch . . . 48

Defining the Program Specification Block (PSB) 48
Recovery and Database Integrity Considerations 49

Considerations for Calling CICS programs from
z/OS batch 49
Performance Considerations for z/OS Batch . . . 49
Runtime JCL 49

Chapter 8. System Considerations for IMS . . . 51
Required File Descriptions 51
Defining the Program Specification Block (PSB) . . 52
Processing Modes 53
Printing Considerations for IMS 53
Recovery and Database Integrity Considerations . . 54
Considerations that Affect Performance 54

Residency Considerations and the IMS Preload
Function 54

Preloading Rational COBOL Runtime Modules 55
Loading Rational COBOL Runtime Modules
into the Link Pack Area 55
Preloading Generated Programs 56

Database Performance 56
Limiting MFS Control Blocks 56
Monitoring and Tuning the IMS System 57

Considerations for Using DB2 in IMS. 57
Recovery and Database Integrity Considerations 57
Checking Authorization 57

Considerations for Using DL/I in IMS 58
Recovery and Database Integrity Considerations 58

Maintaining the Work Database in IMS 58
Deleting Old Records from the Work Database . 58

DL/I Work Database 59
DB2 Work Database 59

Expanding the Work Database 60
DL/I Work Database 60
DB2 Work Database 61

Supporting Multiple Work Databases 63
DL/I Work Databases 63
DB2 Work Databases 63

Considerations for Message Format Services in IMS 64

© Copyright IBM Corp. 1994, 2012 25

26 IBM Rational COBOL Runtime Guide for zSeries

Chapter 5. General System Considerations for z/OS Systems

This chapter describes the system requirements and considerations for
administering the Rational COBOL Runtime in all of the supported z/OS
environments.

This chapter contains the following topics:
v Considerations that affect performance
v Defining and loading VSAM program data files
v Support for DBCS terminals
v Extended addressing considerations for Rational COBOL Runtime
v DB2 considerations
v Backing up data
v Customizing Rational COBOL Runtime

Considerations that Affect Performance
Specifying certain build descriptor and compiler options and making reentrant
programs resident in memory can affect the performance of EGL-generated
programs.

Build Descriptor and Compiler Options
Setting the following build descriptor options may improve runtime performance:
v checkIndices="NO"
v checkNumericOverflow="NO"
v fillWithNulls="NO"
v genReturnImmediate="YES"
v initIORecordsOnCall="NO"
v initNonIODataOnCall="NO"
v leftAlign="NO"
v math="COBOL"
v setFormItemFull="NO"
v spacesZero="NO"
v sqlErrorTrace="NO"
v sqlIOErrorTrace="NO"
v statementTrace="NO"
v validateMixedItems="NO"
v validateOnlyIfModified="YES"
v useXctlForTransfer="NO"

Specifying the following compiler options also may improve runtime performance:
v NOSSRANGE.
v NOTEST.
v OPTIMIZE. OPTIMIZE provides faster runtime performance, but can

significantly increase the compile time. Consider using the NOOPTIMIZE option
during testing and the OPTIMIZE option when moving the program to
production.

For details on COBOL compiler options, refer to your compiler documentation.

Setting the following build descriptor options may improve generation
performance:

© Copyright IBM Corp. 1994, 2012 27

v validateSQLStatements="NO"
v debugTrace="NO"

Modules in Memory
Placing load modules in memory can improve performance by reducing the
number of I/O operations (EXCPs). Load modules can be placed in memory by
using the features of z/OS or the features of the environment in which you are
running. Refer to the appropriate performance consideration sections for more
detailed information about improving performance in a particular runtime
environment.

General z/OS* methods to place load modules in memory are listed below:
v Place modules in the link pack area (LPA). Some of the modules that are

shipped with the Rational COBOL Runtime are reentrant and can be placed in
the LPA. Refer to the Program Directory for Rational COBOL Runtime for zSeries
(GI10–3241–00) for information about modules that are reentrant and LPA
eligible.
Generated programs, online print-service programs, FormGroup format modules,
and shared DataTables are also reentrant and can be included in the LPA.

v Manage the Rational COBOL Runtime data sets and the data sets containing the
generated programs, online print services programs, FormGroup format
modules, and shared DataTables. Use the Virtual Lookaside Facility (VLF) and
the Library Lookaside (LLA) features of z/OS. Those features can place both the
load modules and the partitioned data set (PDS) directories in memory.

Note: The STEPLIB library is searched first. For the z/OS methods, the load
module (for LPA) or the data set (for VLF/LLA) cannot be contained in the
STEPLIB concatenation list.

Files and Databases
Standard tuning techniques (such as buffering) can be used with files and
databases used by generated COBOL programs.

Defining and Loading VSAM Program Data Files
This section describes how to define and load VSAM data sets for use as program
data files in the CICS, IMS BMP, or z/OS batch environment. The section contains
the following information:
v Defining VSAM data sets
v Defining an alternate index
v Loading data into the files

Defining VSAM Data Sets
VSAM data files can be serial (ESDS), relative (RRDS), or indexed (KSDS) files. Use
the IDCAMS program to define a user VSAM data file. Figure 1 on page 29 shows
example JCL that can be used to define the VSAM files.

28 IBM Rational COBOL Runtime Guide for zSeries

Defining an Alternate Index
An alternate index provides you with another way of gaining access to the records
in a given KSDS file. Using a secondary key eliminates the need for you to keep
several copies of the same information organized in different ways for different
programs.

To gain access from an alternate index to the file through its prime index (base
cluster), you must define a path to it. The path sets up an association between the
alternate index and the base cluster, allowing the records in the data set to be
available to you in different sequences. The alternate index is built after the base
cluster is defined.

//DEFVSAM JOB ...
//STEP1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

/* THE FOLLOWING SAMPLE DEFINES A */
/* VSAM INDEXED FILE */

DEFINE CLUSTER (NAME(ELA1.USER.KSDS) -
VOL(xxxxxx) -
CYLINDERS(pp ss) -
KEYS(l d) -
RECORDSIZE(aaa mmm) -
INDEXED)

/* THE FOLLOWING SAMPLE DEFINES A VSAM */
/* NUMBERED RELATIVE RECORD FILE */

DEFINE CLUSTER (NAME(ELA1.USER.RRDS) -
VOL(xxxxxx) -
CYLINDERS(pp ss) -
RECORDSIZE(aaa mmm) -
NUMBERED)

/* THE FOLLOWING SAMPLE DEFINES A VSAM */
/* ESDS FILE */

DEFINE CLUSTER (NAME(ELA1.USER.ESDS) -
VOL(xxxxxx) -
CYLINDERS(pp ss) -
RECORDSIZE(aaa mmm) -
NONINDEXED)

where:

xxxxxx Specifies a valid volume serial number

pp Specifies the primary number of cylinders to be allocated

ss Specifies the secondary number of cylinders to be allocated

l Specifies the length of the key

d Specifies the offset of the key

aaa Specifies the desired average record length

mmm Specifies the maximum record length

Figure 1. Defining VSAM Data Files

Chapter 5. General System Considerations for z/OS Systems 29

Figure 2 shows example IDCAMS definition commands for the base cluster and the
alternate index cluster for an indexed file.

Loading Data in the Files
If you are using a VSAM indexed file (KSDS) and you want to open it for input
only, initialize the file with at least one record. The file must have at least one
record because a VSAM restriction prevents a file from being opened for input if
the file is empty. While an empty file might be opened for output or both input
and output, it must contain data to be opened for input.

There are several ways that you can put data into a file. One way is to create an
EGL program that uses an add statement to add records to an empty serial file.
Once the program ends, you can use the IDCAMS REPRO command to copy the
serial file into an indexed file.

Another way is to write a program that uses an add statement to add records to an
empty indexed file. You must close the file in order to make the new records
accessible.

Another way to initialize a VSAM KSDS file is to use a utility program shipped
with the Rational COBOL Runtime product. This utility can be used to initialize
the key of a VSAM KSDS file. Figure 3 on page 31 shows how to initialize a VSAM
KSDS file by setting the key to hexadecimal zeros.

DEFINE CLUSTER (NAME(VSAM.KSDS.BASE.FILE) -
VOLUMES(xxxxxx) -
CYLINDERS(pp ss) -
KEYS(l d) -
RECORDSIZE(aaa mmm) -
INDEXED)

DEFINE ALTERNATEINDEX (NAME(VSAM.KSDS.ALT.INDEX) -
KEYS(l d) -
CYLINDERS(pp ss) -
RELATE(VSAM.KSDS.BASE.FILE) -
VOLUMES(xxxxxx))

DEFINE PATH(NAME(VSAM.KSDS.ALT.INDEX.PATH) -
PATHENTRY(VSAM.KSDS.ALT.INDEX))

BLDINDEX INDATASET(VSAM.KSDS.BASE.FILE) -
OUTDATASET(VSAM.KSDS.ALT.INDEX)

where:

xxxxxx Specifies a valid volume serial number

pp Specifies the primary number of cylinders to be allocated

ss Specifies the secondary number of cylinders to be allocated

l Specifies the key length

d Specifies the key displacement

aaa Specifies the desired average record length

mmm Specifies the maximum record length

Figure 2. Defining the Base Cluster and the Alternate Index Cluster

30 IBM Rational COBOL Runtime Guide for zSeries

You can also use the IDCAMS utility to load initial data into an indexed file.
Figure 4 shows an example of loading data into a VSAM KSDS file. The data
contained in the USER.KSDS.INPUT file is loaded into the USER.KSDS data set.

Support for DBCS terminals
Rational COBOL Runtime provides support for the IBM Personal System/55 and
the IBM 5550 family of terminals (emulating an IBM 3270 device). In addition to
the basic hardware, this support uses character set F8 and four hardware attributes
for double-byte character set (DBCS). The extended attributes are shift-out (SO)
and shift-in (SI) enable, field outlining, color, and extended highlighting.

For the CICS environment, Rational COBOL Runtime sends hardware attributes to
the terminal only if the terminal supports them. The attributes are ignored if the
terminal does not support them.

The IMS environments use the Message Format Services (MFS) to support terminal
and printer maps. During generation, you can use the mfsDevice,
mfsExtendedAttr, and mfsIgnore build descriptor options to specify device
characteristics for all devices that are used in a FormGroup. Refer to the EGL
Generation Guide for more details. Unpredictable results can occur if attributes are
used that are not supported by the hardware. See “Considerations for Message
Format Services in IMS” on page 64 for additional information concerning the
message format services options.

Extended Addressing Considerations for Rational COBOL Runtime
Some of the code provided with Rational COBOL Runtime can run in extended
addressing mode. This section describes considerations for using the extended
addressing mode.

Most of the code shipped with Rational COBOL Runtime runs in 31-bit addressing
mode and resides above the 16MB line.

Most of the storage acquired by Rational COBOL Runtime is above the 16MB line
unless the first EGL program in the run unit is link-edited with AMODE(24) or
generated with the data build descriptor option set to 24. The AMODE(24)
program attribute specifies that the program runs in 24–bit addressing mode.

//LOAD JOB...
//JOBLIB DD DSN=ELA.VxRxM0.SELALMD,DISP=SHR
//INITK EXEC PGM=FZEZREBO,PARM=’I,KSDS’
//SYSPRINT DD SYSOUT=A,DCB=(LRECL=121,BLKSIZE=121,RECFM=FB)

//KSDS DD DSN=USER.KSDS,DISP=SHR
//SYSIN DD DUMMY

Figure 3. Initializing a VSAM KSDS File

//JOB KSDSLOAD
//LOAD EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

REPRO INDATASET(’USER.KSDS.INPUT’) OUTDATASET(’USER.KSDS’)
/*
//

Figure 4. Loading a VSAM KSDS File

Chapter 5. General System Considerations for z/OS Systems 31

DB2 Considerations
This section discusses preparing programs and checking access authorization to
database resources when using DB2 on z/OS systems.

Preparing Programs
Before running a program, the SQL statements need to be analyzed and prepared.

If you use DB2, you also need to bind the DB2 program plan.

Note: The above task is performed by the Rational COBOL Runtime build process.

If your programs run in the z/OS batch or IMS BMP environments, you might also
need to tailor the runtime JCL templates. Refer to the EGL Generation Guide for
additional information on tailoring runtime JCL templates.

Checking Access Authorization
The database manager checks whether program users have the authority to access
tables or run programs. The type of checking done varies depending on your
system and the processing mode.

When accessing DB2 in generated COBOL programs, program users must be
authorized to run the corresponding DB2 program plan and package.

DB2 requires an authorization identifier to ensure that program users have the DB2
authority to perform operations on the database and tables. The type of
authorization checking done depends on whether the processing mode is static or
dynamic. The authorization identifier of the program developer performing the
BIND command is used for static SQL statements; the authorization identifier of
the program user is used for dynamic SQL statements. Generated COBOL
programs use dynamic SQL statements in either of two cases:
v The SQL statement is in an EGL prepare statement
v The EGL statement uses an SQL record, and a host variable identifies the SQL

table name associated with that record

Any other SQL statements in the program are static statements. Refer to the DB2
administration manual for more information on the various ways the authorization
identifier value is set.

Backing Up Data
You should regularly back up your data. This includes all files related to Rational
COBOL Runtime, private libraries, user-created data files, and user load libraries.
System services are provided to back up and restore user libraries.

Customizing Rational COBOL Runtime
Customizing Rational COBOL Runtime consists of performing some of the same
procedures used to install the product on the system. These procedures are
described in the Program Directory for Rational COBOL Runtime for zSeries
(GI10-3377-00). The program directory contains information on changing system
options.

32 IBM Rational COBOL Runtime Guide for zSeries

Chapter 6. System Considerations for CICS

This chapter provides additional system requirements and considerations for
administering Rational COBOL Runtime in the CICS environment.

The following information is discussed:
v Required file descriptions
v Segmented and nonsegmented processing
v Using transient data queues for printing
v z/OS CICS terminal printing
v Using the new copy function
v Specifying recovery options in the CICS tables
v Considerations that affect performance
v Using and allocating data files
v Considerations for using DB2 in CICS
v Considerations for using DL/I in CICS
v Setting up the National Language

Required File Descriptions
Rational COBOL Runtime requires the following files:

File Name
Description

ELAD This transient data queue is the default destination for Rational COBOL
Runtime error messages. Rational COBOL Runtime produces error
messages when it detects an error that prevents a program from
continuing.

The ELAD transient data queue is defined when Rational COBOL Runtime
is installed. If you want to direct error messages for different transactions
to different queues, define the other queues with the same characteristics
as ELAD. Use the error diagnostic utility ELAC to direct error messages to
the required queue. See the description of the utility in “Diagnostic Control
Options for z/OS CICS Systems” on page 125 for more information.

ELACFIL
This is the error diagnostic control file. This file is created during
customization.

ELAT This transient data queue is the destination for Rational COBOL Runtime
trace records.

If requested, Rational COBOL Runtime can create trace records for selected
runtime operations. The ELAT transient data queue is defined when
Rational COBOL Runtime is installed. For details, see Chapter 20, “Rational
COBOL Runtime Trace Facility,” on page 155.

ELATOUT
This file is associated with the ELAT transient data queue at installation
time. The output of the Rational COBOL Runtime trace facility is sent to
this data set. The attributes of this data set are DSORG=PS, LRECL=133,
BLKSIZE=1330, RECFM=FBA.

EZEPRINT
The file that you associate to the Rational COBOL file name PRINTER at

© Copyright IBM Corp. 1994, 2012 33

resource association will be used when printing from a program that
displays print forms. This file can be defined with a file type of SPOOL or
TRANSIENT. This file is normally associated with the transient data queue
PRIN.

If you installed Rational COBOL Runtime as described in the Rational
COBOL Runtime program directory, PRIN is defined as an indirect
destination associated with the system printer. The maximum record length
that a generated program writes to the system printer is 650 bytes for
double-byte character set (DBCS) print forms and 133 bytes for single-byte
character set (SBCS) print forms. The first byte is an American National
Standards printer control character. The DBCS record length is longer than
the physical printer line length because the print record can contain
outlining and shift-out/shift-in (SO/SI) control characters that do not
appear on the device.

If you are using Rational COBOL Runtime to print to a file destination
other than PRIN, the characteristics of that file should be the same as
PRINTER.

EZEPRMG
This VSAM indexed file (KSDS) contains the parameter group records used
for print control options for the Rational COBOL Runtime terminal printer
utility, FZETPRT. The FZETPRT program reads this file searching for the
parameter group matching the transaction name that started FZETPRT.

See “Special Parameter Group for the FZETPRT Program” on page 36 for a
description of the print parameters. See “Using the Parameter Group
Utility for z/OS CICS Systems” on page 129 for more information about
maintaining this special parameter group.

Segmented and Nonsegmented Processing
Generated EGL textUI programs can issue a converse statement in either
nonsegmented (CICS conversational) or segmented (CICS pseudoconversational)
mode. When a converse statement is run in segmented mode or when a show
statement is run, the current transaction ends and the program status is saved in a
temporary storage queue until the terminal input is received. The workDBType
build descriptor option specifies whether a main or auxiliary temporary storage
queue is used. The temporary storage queues are deleted at the end of the run
unit. The storage queue names have the following format:

xyyytttt

where:
x Specifies a byte with the hex value X'EE'
yyy Specifies WRK (program working storage) or MSG (current form saved

across help or error display)
tttt Specifies the terminal ID associated with the transaction

For details on segmentation, refer to the EGL help system.

34 IBM Rational COBOL Runtime Guide for zSeries

Using Transient Data Queues for Printing in z/OS CICS
Printed output destined for a transient data queue is accumulated in temporary
storage. The temporary storage queue name has the following format:

ttttnnnn

where:
tttt Is the transient data queue name
nnnn Is the EXEC Interface Block (EIB) task number

When a program ends, or a close statement is issued for a print map, or a
segmentation break occurs, Rational COBOL Runtime enqueues on a transient data
queue to prevent interspersed printing from other transactions. Rational COBOL
Runtime copies the printed output onto the transient data queue. The printed
output is in line character format with an American National Standards
printer-control character.

The default print destination for z/OS CICS is a transient data queue named PRIN.
If you installed Rational COBOL Runtime as described in the Rational COBOL
Runtime program directory, PRIN is an indirect destination associated with the
system printer. During program generation, this destination can be changed to any
4-character transient data queue name. The destination control table (DCT) entry
for the queue determines the actual destination. The destination can be the system
printer, a data set, or a terminal printer.

You can override the default destination at generation time by specifying the
alternate destination as the system resource name for the printer file. You can
change the print destination at run time by using the
converseVar.printerAssociation system variable. Refer to the EGL help system for
additional information on the converseVar.printerAssociation system variable.

EGL also provides a way of starting an asynchronous print task from a program
and controlling the print destination from the program starting the asynchronous
task. To do this, define the print task as a main basic program and generate it with
the printDestination="TERMINALID" build descriptor option. Use the
vgLib.startTransaction() system function to start the main basic program,
specifying the print destination in the vgLib.startTransaction() parameters. The
main basic program ignores the generated print destination and uses the
destination specified in the vgLib.startTransaction() system function. Refer to the
EGL help system for more information on the vgLib.startTransaction() system
function.

z/OS CICS terminal printing
The program called FZETPRT supports terminal printing. This program runs as a
CICS transaction that starts automatically when records are written to the transient
data queue. If Rational COBOL Runtime was installed as described in the Rational
COBOL Runtime program directory, the transaction name is EZEZ for IBM
5550-type printers and PRIN for all other printers. To send printed output to the
terminal, you must include a TYPE=INTRA for the transient data queue in the
CICS TDQUEUE resource definition. Specify PRIN or EZEZ for the transaction ID
in the TDQUEUE resource definition entry. Unless you specify a terminal name in
the TDQUEUE resource definition entry, the queue identifier must be the same as
the terminal printer identifier. The trigger level in that entry must be set to 1 to
ensure proper output. See “Printing Transient Data at a Terminal Device” on page
44 for a sample TDQUEUE resource definition entry.

Chapter 6. System Considerations for CICS 35

When the FZETPRT program is initiated, it reads a line from the transient data
queue, converts the American National Standards printer-control character to NL
EOM format, and writes to the terminal printer specified in the DCT entry. The
FZETPRT program buffers multiple print lines into a single CICS SEND command
to improve performance.

When using terminal printing with Rational COBOL Runtime, you should be
aware of potential problems regarding form-feed orders and page alignment. When
the FZETPRT program is triggered, a form-feed order is issued to the printer to
ensure that it begins printing at the top of a page. If a second form is sent to the
queue before it is emptied by the FZETPRT program, a form-feed order is not
issued before the second form is printed. Page alignment can vary depending on
the timing with which successive forms are sent to the queue.

Another potential problem can occur when printing successive forms. If one of the
forms in the series is defined with lines equal to, or one line fewer than, the
lines-per-page setting on the printer, a blank page occurs between the printed
forms. To avoid this, define the form size as 2 lines fewer than the lines-per-page
setting on the printer. Because the FZETPRT program inserts a newline order to
ensure that printing begins in column 1, the first line of the form to be printed is
actually printed on the second line of the page. The second line must be allowed
because a newline order is added after the last line of the form, which advances
the print head to the beginning of the next line. If this happens to be the first line
of the following page, the next form-feed order causes the page to be skipped
before printing resumes.

Another thing to consider is that although Rational COBOL Runtime sometimes
causes successive, stand-alone form-feed orders (“1”), the FZETPRT program
suppresses all but one of these in converting them to NL EOM format.

If these form-feed considerations are too restrictive for your needs, consider using
the FORMFD=NO parameter.

Special Parameter Group for the FZETPRT Program
You can provide terminal printing parameters to the FZETPRT program to vary the
printed output by using a special parameter group file.

The FZETPRT program attempts to read a file named EZEPRMG for a parameter
group that has the same name as the transaction used to start the FZETPRT
program. For example, if the print transaction that starts the FZETPRT program is
named PRIN, then FZETPRT tries to find the parameter group named PRIN. If the
parameter group is not located in a file named EZEPRMG, or if EZEPRMG does
not exist, then the FZETPRT program reads the DCAPRMG file to find the
parameter group associated with this transaction.

When the transaction starts, the FZETPRT program reads the parameter group and
varies the printer output according to the contents. If you need to use the terminal
printing parameters, create a parameter group using the Rational COBOL Runtime
utility provided for this purpose. See “Using the Parameter Group Utility for z/OS
CICS Systems” on page 129 for more information about maintaining this special
parameter group

For this parameter group, you can specify the following four parameters:
v PRTBUF=xxx
v PRTMPP=nnn

36 IBM Rational COBOL Runtime Guide for zSeries

v PRTTYP=D
v FORMFD=NO

Note: Do not include blanks between keywords and their associated values.

PRTBUF Parameter
Use the PRTBUF parameter to set the size of the printer buffer. The number of
SEND commands sent to the terminal printer depends on the size of the printer
buffer. The following example shows how to specify the buffer size using the
PRTBUF parameter:

PRTBUF=xxx

where:

xxx Is the size in bytes of the printer buffer

The FZETPRT program uses a default buffer size if any of the following conditions
occur:
v The parameter is not specified in the parameter group.
v There is no parameter group associated with the transaction.
v The parameter keyword is misspelled.
v The value specified is not valid (values greater than 8K bytes, smaller than 480

bytes, or not numeric).
v The EZEPRMG or DCAPRMG file does not exist or is not available.

The default buffer size is 2KB (where KB equals 1024 bytes) for the standard
character set printers and 480 bytes for LU type 3 printers.

For double-byte character set (DBCS) users the default buffer size and the
maximum buffer size allowed is 1918 bytes. The default value is used if your
specified value exceeds the maximum number of bytes.

When the buffer size is larger than the default, usage of the PRTBUF parameter is
optional. However, using the PRTBUF parameter is recommended to reduce the
number of SEND commands sent to the terminal. If the printer buffer size is
smaller than the default, specify the real buffer size using this parameter. Not
specifying the real buffer size can cause unpredictable results.

PRTMPP Parameter
Use the PRTMPP parameter to set the maximum number of print positions. The
following example shows how to specify the number of print positions using the
PRTMPP parameter:

PRTMPP=nnn

where:

nnn Is the physical length (maximum print position) of the printer line

The FZETPRT program assumes a default maximum print positions of 132 if any
of the following occurs:
v The parameter is not specified in the parameter group.
v There is no parameter group associated with the transaction.
v The parameter keyword is misspelled.
v The value specified is not valid (not numeric).
v The EZEPRMG or DCAPRMG file does not exist or is not available.

Chapter 6. System Considerations for CICS 37

Use caution when coding the value of this parameter. If the value entered is a
valid numeric, the FZETPRT program uses the value without validating it. If the
value is greater than the number of print positions available on the actual printer,
possible malfunctioning can take place causing more line skips than necessary.

Note: For DBCS users, this parameter must be specified unless the printer is
configured with MPP=132.

PRTTYP Parameter
Use the PRTTYP parameter if you use a DBCS printer. The following example
shows how to specify the use of a DBCS printer using the PRTTYP parameter:

PRTTYP=D

Note: This parameter must be used to specify that you are a DBCS user and your
output is being directed to an IBM 5550-family printer.

If you use multiple printers with different characteristics (namely different MPP,
different buffer size, or DBCS versus non-DBCS printers), you need as many
transaction IDs as there are printers, each one associated with the FZETPRT
program. For examples of table entries for two printers, see the CICS transaction
definitions provided with Rational COBOL Runtime for the PRIN (non-DBCS
printers) and EZEZ (DBCS printers) transactions.

FORMFD Parameter
Use the FORMFD parameter to control the form-feed orders that the FZETPRT
program issues. The following example shows the format of the FORMFD
parameter:

FORMFD=NO

The FZETPRT program defaults to inserting form-feed orders into the printer data
stream if any of the following occurs:
v The parameter is not specified in the parameter group.
v There is no parameter group associated with the transaction.
v The parameter does not appear as FORMFD=NO.
v The EZEPRMG or DCAPRMG file does not exist or is not available.

If the parameter is specified correctly, the FZETPRT program does not insert
form-feed orders for any reason. This includes using the converseLib.pageEject
system function, closing the printer, or the initial form feed that is normally done.
All forms control depends on the map size specified during map definition.

CICS Entries for FZETPRT (DBCS only)
If you are using an SCS-type printer and you use DBCS, ensure that your system
programmer has coded the destination control table (DCT) and the program
control table (PCT) entries for a transaction that runs FZETPRT with the following
option:

MSGPOPT=CCONTRL

The MSGPOPT option defines the optional facilities that a task can use. The
CCONTRL parameter indicates that the program can control the outbound
chaining of request units. Refer to the CICS manuals for more information.

38 IBM Rational COBOL Runtime Guide for zSeries

Using the New Copy Function
The new copy function (either the Rational COBOL Runtime new copy utility or
the CICS NEWCOPY command) causes a transaction to use a new copy of a
program, FormGroup, or DataTable referenced in the transaction. For the purposes
of this function, libraries and services are considered to be programs. The Rational
COBOL Runtime new copy utility is implemented as an EGL program in the CICS
environment. Active transactions continue to use the current version of a program,
FormGroup, or DataTable until the transaction either completes or reaches the end
of a segment. A new copy of the program, FormGroup, or DataTable is then made
available to the transaction by Rational COBOL Runtime. Use the new copy
function when programs, FormGroups, and DataTables are modified and generated
again. This enables you to install new versions of programs, FormGroups, and
DataTables onto your system without disrupting operation.

For programs and FormGroups you can use the CICS NEWCOPY command or the
Rational COBOL Runtime new copy utility to cause the new copy of the program
to be used the next time a load request is issued for the program.

The Rational COBOL Runtime new copy utility does a new copy for both the
online print services program and the FormGroup format module when you
specify a part type of FormGroup. If you use the CICS NEWCOPY command for a
FormGroup, you must issue the NEWCOPY for both the online print services
program and the FormGroup format module.

For DataTables, you must use the Rational COBOL Runtime new copy utility to
cause a fresh copy of the DataTable to be used the next time a load request is
issued for the DataTable. Do not use the CICS NEWCOPY command for
DataTables. The Rational COBOL Runtime new copy utility sets a flag indicating
that the new copy of the table is to be used the next time a program loads the
table contents.

For more information on the Rational COBOL Runtime new copy utility, see “New
Copy” on page 122.

Specifying Recovery Options in CICS
EGL-generated programs can make use of all the z/OS CICS recovery and data
integrity features. For a description of those features, refer to the recovery and
restart information for your release of CICS.

Considerations that Affect Performance
This section describes factors that affect system performance and suggestions on
how to improve performance. For information beyond what is stated in this
section, refer to the performance guide for your release of CICS.

Residency (Modules in Memory) Considerations
The performance of a program is affected by the number of times that a running
program requires access to a disk. Programs require access to disks for the
following reasons:
v Locating and loading Rational COBOL Runtime load modules
v Retrieving and storing user data
v Locating and loading application programs, FormGroup format modules and

online print services programs, and DataTable programs

Chapter 6. System Considerations for CICS 39

The Rational COBOL Runtime loads objects as they are needed. For example, the
Rational COBOL Runtime loads a program, library, service, online print services
program, FormGroup format module, or DataTable when another program calls or
references it. If you make an object resident, then the object remains in storage
after it is loaded by the Rational COBOL Runtime. You can use the RES parameter
on the program definition to make any of these resident: a program, library,
service, online print services program, or FormGroup format module.

For DataTables, use the shared and resident properties in the DataTable part
definition to control residency for all programs that use the DataTable. In addition,
in VisualAge Generator Compatibility mode, you can use the deleteAfterUse
property on the program's use declaration for the DataTable to affect how the
program manages the DataTable.

Virtual Storage Considerations and Residency
It is true that if a program, library, service, online print services program,
FormGroup module, or DataTable program is resident, less I/O is required for
multiple loads. However, making these objects resident requires more virtual
storage because the modules accumulate in storage as they are loaded and are not
deleted after they are used.

When deciding what to make resident, consider the following:
v Storage constraints
v Frequency of program use
v Long running programs versus programs that are started more frequently

Because most systems have virtual storage constraints, it is not possible to make
everything resident. You should establish priorities for deciding which objects you
want to make resident. These residency priorities reflect a trade-off between
program usage and storage constraints. Your priorities can dictate that some
components of a program (such as the online print services program or
FormGroup format module) should be made resident, while other components
(such as DataTables) should not.

In CICS, when a program component is made resident, it remains in storage from
the time it is loaded into storage until either CICS is shut down or the new copy
function is used. To aid in deciding which programs should be made resident, you
can use CICS shutdown statistics to determine how often a generated program or
other component is loaded into the region or partition.

Generally, objects that are loaded more than once are prime candidates for
residency. Examples of this a DataTable that is used by more than one program or
a program that is called more than once.

Programs that are not frequently initiated or have long running time should not be
made resident.

If you plan to run a program in segmented mode (CICS pseudoconversational),
you should consider making all components of the program resident. In
pseudoconversational mode, the program and its components are deleted and are
loaded again at each segment break if they are not made resident, and these
actions degrade performance.

Work Database Temporary Storage Queue Considerations
When running in pseudoconversational mode (using a segmented converse
statement), the data and the status associated with the program must be saved

40 IBM Rational COBOL Runtime Guide for zSeries

during user think time. You use the workDBType build descriptor option to
control whether this information is saved into the CICS main temporary storage or
auxiliary storage. Using main temporary storage can result in better performance
because the data is written to memory within the CICS address space instead of
writing the data to disk space.

Note: Use of main temporary storage can degrade system performance because the
increased address space that is referenced can increase the paging activity.
Also, CICS can experience a short-on-storage condition if the program data
to be saved exceeds the available CICS storage. Therefore, if you take
advantage of main temporary storage for programs requiring better
performance, you should monitor your system to ensure that virtual storage
problems do not occur.

The amount of data written or read on each request to CICS when saving program
data and status, can also affect performance. The installation options module,
ELARPIOP, specifies the largest size record Rational COBOL Runtime writes to
main or auxiliary temporary storage. The default size is 32KB (where KB equals
1024 bytes), which is the largest value allowed by CICS. Use a large value to
ensure that the least number of write requests are required, and, if using auxiliary
storage, to ensure that the least number of I/O operations are required. See the
Program Directory for Rational COBOL Runtime for zSeries for information on how to
change the value in the installation options module.

Note: If you are using auxiliary storage queues, you should ensure the control
interval size (CISIZE) of the VSAM data set used for auxiliary temporary
storage matches the size specified in the installation options file. If the
CISIZE for the data set is smaller, CICS splits the data written or read into
smaller pieces and does multiple I/O operations for each Rational COBOL
Runtime request. Also ensure that you have an adequate number of buffers
for the auxiliary temporary storage data set in order to reduce the number
of physical I/O operations.

Terminal Printing
The performance of terminal printing can be enhanced by specifying the PRTBUF
parameter for the FZETPRT program. See “z/OS CICS terminal printing” on page
35 for more information on terminal printing and the PRTBUF parameter

Using and Allocating Data Files in CICS
This section describes how to define data files for use in generated EGL-generated
programs in the CICS environment.

Defining and Loading VSAM Data Files
Before CICS programs can use VSAM data files, you must define and load them.
See “Defining and Loading VSAM Program Data Files” on page 28 for information
on defining VSAM data sets, defining an alternate index, and loading a VSAM
data set.

Adding the Job Control Statements
After the data set has been defined and loaded, add the data set name to the CICS
startup JCL to allocate user files. You can also let CICS dynamically allocate the
data set to the file using the information specified in the CICS FILE resource
definition. Figure 5 on page 42 shows example allocation statements for an

Chapter 6. System Considerations for CICS 41

indexed, relative, and serial file, and an alternate index.

Adding a CICS FILE Resource Definition for a File
After you have defined and loaded the data set and added it to the CICS startup
JCL, you must also create a CICS FILE resource definition entry so that the CICS
program can access the data set. Use the CICS Resource Definition Online (RDO)
to create the FILE resource definition.

Figure 6 on page 43 shows resource definitions that can be used to add a file name.
Rational COBOL Runtime uses the name on the FILE operand. The FILE operand
name must be the same as the DD name in the CICS startup JCL. All other
operands must be the same as when you create a FILE resource definition for an
indexed, relative, or serial file that is accessed by a non-EGL program.

Create a FILE resource definition for every file used by a program. You can define
the files as remote files.

For further information, refer to the appropriate CICS resource definition guide for
your environment.

//KSDSFILE DD DSN=ELA1.USER.KSDS,DISP=SHR
//RRDSFILE DD DSN=ELA1.USER.RRDS,DISP=SHR
//ESDSFILE DD DSN=ELA1.USER.ESDS,DISP=SHR
//KSDSAIX DD DSN=VSAM.KSDS.ALT.INDEX.PATH,DISP=SHR

Figure 5. Allocating User Files

42 IBM Rational COBOL Runtime Guide for zSeries

Using Remote Files
EGL-generated programs can access files that do not reside on your CICS system.

Refer to the EGL online help for additional information on the fileLink element of
the linkage options part. Refer to the appropriate CICS manuals for information
about defining remote programs, transactions, or files.

Defining Transient Data Queues
Transient data queues are used in CICS for reading or writing data from tapes,
disks, or other sequential files. If you associated a serial file with a transient data
queue at generation, you must define a CICS TDQUEUE resource definition for the
queue.

You can define the following types of transient data queues:

KSDS

DEFINE FILE(KSDSFILE) GROUP(xxxxxx)
DSNAME(Indexed.DSName)
DISPOSITION(SHARE) ADD(YES)
BROWSE(YES) DELETE(YES) READ(YES)
UPDATE(NO) RECORDFORMAT(F)
STRINGS(8) LSRPOOLID(NONE)
RECOVERY(NONE) NSRGROUP(GROUP1)
INDEXBUFFERS(8) DATABUFFERS(9)

Alternate Index

DEFINE FILE(KSDSAIX) GROUP(xxxxxx)
DSNAME(AlternateIndex.DSName)
LSRPOOLID(NONE) DISPOSITION(SHARE)
STRINGS(5) NSRGROUP(GROUP1)
BROWSE(YES) DELETE(NO) READ(YES)
ADD(NO) UPDATE(NO) RECORDFORMAT(F)
RECOVERY(NONE) INDEXBUFFERS(5)
DATABUFFERS(6)

RSDS

DEFINE FILE(RSDSFILE) GROUP(xxxxxx)
DSNAME(Relative.DSName)
DISPOSITION(SHARE) ADD(YES)
BROWSE(YES) DELETE(YES) READ(YES)
UPDATE(NO) RECORDFORMAT(F)
STRINGS(8) LSRPOOLID(NONE)
RECOVERY(NONE) NSRGROUP(GROUP1)
INDEXBUFFERS(8) DATABUFFERS(9)

ESDS

DEFINE FILE(ESDSFILE) GROUP(xxxxxx)
DSNAME(EntrySequenced.DSName)
DISPOSITION(SHARE) ADD(YES)
BROWSE(YES) DELETE(YES) READ(YES)
UPDATE(NO) RECORDFORMAT(F)
STRINGS(8) LSRPOOLID(NONE)
RECOVERY(NONE) NSRGROUP(GROUP1)
INDEXBUFFERS(8) DATABUFFERS(9)

Figure 6. Adding a File Resource Definition

Chapter 6. System Considerations for CICS 43

v Intrapartition (temporary data)
v Extrapartition (data that other non-CICS regions can use)

Intrapartition transient data files contain data that is not usable after it is read.

Defining Intrapartition Transient Data
The following two examples show how to define intrapartition transient data files.

Passing Transient Data between CICS Transactions: This is an example of a
TDQUEUE resource definition that can be used to pass data from one CICS
transaction to another. The file destination specified at generation in the resource
association part should be systemName="xxxx".

DEFINE TDQUEUE(xxxx) GROUP(gggggggg)
TYPE(INTRA) ATIFACILITY(FILE)

Printing Transient Data at a Terminal Device: This is an example of a TDQUEUE
resource definition that can be used for terminal printing in Rational COBOL
Runtime. At generation time, the resource associations part specifies how you want
to handle printer. The default is the first four characters, for example, prin. (A
TDQUEUE resource definition is supplied for prin that sends the printed output to
the system printer.) The program supplied for printing, FZETPRT, reads records
from the transient data queue and issues SEND commands to the terminal in order
to print the records.

In this sample TDQUEUE entry, the PR01 terminal is to receive the printed output.
PR01 is a z/OS CICS printer terminal name. You specify the printer destination at
generation as PR01. Rational COBOL Runtime writes the printed output to the
transient data queue, PR01. The transaction PRIN starts and causes the program
FZETPRT to run. The data is read from the transient data queue and sent to the
terminal, PR01. The RDO TRANSACTION entry for PRIN and the PROGRAM
entry for FZETPRT are supplied. You must supply the destination control table and
the terminal control table entries for the transient data and terminal.

DEFINE TDQUEUE(PR01) GROUP(gggggggg)
TYPE(INTRA) ATIFACILITY(TERMINAL)
TRANSID(PRIN) TRIGGERLEVEL(1)

If the terminal printer is a DBCS printer, specify EZEZ as the TRANSID.

Defining Extrapartition Transient Data
Data to be read from tape or sent to a printer is contained in extrapartition
transient data queues.

The following example shows how to use extrapartition transient data queues.
These files can be used by non-CICS devices and by CICS.

Printing Transient Data: This is an example of a TDQUEUE resource definition
specification that can be used to print output on a high-speed system printer. The
file destination specified at generation in the resource associations part should be
systemName="xxxx".

DEFINE TDQUEUE(zzzz) GROUP(gggggggg)
TYPE(EXTRA) TYPEFILE(OUTPUT)
RECORDFORMAT(VARIABLE) BLOCKFORMAT(BLOCKED)
RECORDSIZE(133) BLOCKSIZE(1330)

You also need to add the appropriate DD statement to the CICS runtime JCL to
assign a printer to the file name. The extrapartition destination data queue sample
shown above requires the following DD statement:

44 IBM Rational COBOL Runtime Guide for zSeries

//PRINTER DD SYSOUT=*,DCB=(RECFM=VBA,LRECL=133,BLKSIZE=1330)

Considerations for Using DB2 in CICS
This section presents considerations for programs that access DB2 databases, and
recovery and database integrity for DB2 programs running in the CICS
environment.

Associating DB2 Databases with CICS Transactions
If the programs running under a transaction access DB2 databases, then you must
create CICS DB2ENTRY or DB2TRAN resource definitions to associate the DB2
plan name with the CICS transaction code.

For information on the parameters you can specify when you create CICS
DB2ENTRY or DB2TRAN resource definitions, refer to the CICS resource definition
guide.

Recovery and Database Integrity Considerations
EGL-generated programs can use all the recovery and data integrity features that
are provided by DB2 in the CICS environment.

Relational databases are recoverable resources. If your program makes changes to a
relational database, the changes are not committed to the database until the end of
a logical unit of work (LUW). If your program ends abnormally before the end of
an LUW, all changes that were made since the beginning of the LUW are backed
out. See “Specifying Recovery Options in CICS” on page 39 for more information
about handling recovery in CICS. For information on when an LUW ends, refer to
the EGL help topic "Logical unit of work."

Considerations for Using DL/I in CICS
This section discusses recovery and database integrity considerations for DL/I
programs running in the CICS environment.

Refer to the EGL helps for additional information.

Recovery and Database Integrity Considerations
EGL-generated programs can make use of all the recovery and data integrity
features that are provided by DL/I in the z/OS CICS environment.

DL/I databases are recoverable resources. If your program makes changes to a
DL/I database, the changes are not committed to the database until the end of a
logical unit of work (LUW). If your program ends abnormally before the end of an
LUW, all changes that were made since the beginning of the LUW are backed out.
See “Specifying Recovery Options in CICS” on page 39 for more information about
handling recovery in CICS. For information on when an LUW ends, refer to the
EGL help topic "Logical unit of work."

Setting up the National Language
On CICS, the national language code used for the first program in the run unit
determines the language that is used for all messages for all programs in the run
unit.

Chapter 6. System Considerations for CICS 45

46 IBM Rational COBOL Runtime Guide for zSeries

Chapter 7. System Considerations for z/OS Batch

This chapter presents system considerations for running EGL-generated programs
in the z/OS batch environment.

The following information is discussed:
v Required file descriptions
v Using VSAM program data files
v Considerations for using DB2
v Considerations for using DL/I
v Performance considerations
v Runtime JCL

Required File Descriptions
Rational COBOL Runtime requires the following files:

File Name Description

EZEPRINT This file is used when printing from a program that displays print
forms. EZEPRINT can be allocated to either a data set or to a
SYSOUT class. The file must have a VBA (variable-blocked ANSI)
record format.

The maximum record length that a generated program can write to
the print data set is 654 bytes for DBCS forms and 137 bytes for
SBCS forms. The record length includes 4 bytes for the variable
length record header, 1 byte for the American National Standards
printer-control character, and the print line for the print form. The
DBCS record length is longer than the print line length because the
print line can contain outlining control characters and shift-out
(SO) and shift-in (SI) characters that are not displayed on the
device. The logical record length defined for the data set must be
greater than or equal to the length of the longest line written by
the program, including the DBCS SO/SI characters.

If you are using Rational COBOL Runtime to print to a file
destination other than EZEPRINT, the characteristics of that file
should be the same as EZEPRINT.

SYSPRINT, SYSOUT, SYSABOUT, SYSUDUMP
These z/OS system files are used by EGL-generated programs. Do
not specify DCB parameters for these files.

ELAPRINT This system output file is used by generated programs. Specify
ELAPRINT with RECFM=FBA and BLKSIZE=1330 DCB
parameters.

ELATRACE This file is the trace control file for the z/OS batch environment.
The attributes for this data set are LRECL=80, RECFM=FB, and
BLKSIZE=multiple of 80. The trace filters are specified in the
ELATRACE data set.

ELATOUT The output of the Rational COBOL Runtime trace facility is sent to
this data set in the z/OS batch environment. The attributes for this
data set are DSORG=PS, LRECL=133, BLKSIZE=1330, and
RECFM=FBA.

© Copyright IBM Corp. 1994, 2012 47

Using VSAM Program Data Files in z/OS Batch
VSAM program data files must be defined before your z/OS batch program can
use them. See “Defining and Loading VSAM Program Data Files” on page 28 for
information on defining VSAM data sets, defining alternate indexes, and for
information on loading VSAM data sets.

The DD statements for user files are generated for you and placed in the sample
runtime JCL.

Considerations for Using DB2 in z/OS Batch
This section presents system considerations for database recovery and integrity for
DB2 programs.

For information on running DB2 programs in z/OS batch, see Chapter 13,
“Preparing and Running Generated Programs in z/OS Batch,” on page 101.

Recovery and Database Integrity Considerations
EGL-generated programs can use all the recovery and data integrity features
provided by DB2.

Relational databases are recoverable resources. If your program makes changes to a
relational database, the changes are not committed to the database until the end of
a logical unit of work (LUW). If your program ends abnormally before the end of
an LUW, all changes that were made since the beginning of the LUW are backed
out. For information on when an LUW ends, see the EGL help topic "Logical unit
of work."

If a program runs in z/OS batch and accesses DB2, it can run in an RRSAF
environment. The EGL help topic "Logical unit of work" also has details on
enabling the RRSAF capability.

Considerations for Using DL/I in z/OS Batch
This section presents the following information:
v Defining the program specification block (PSB)
v Recovery and database integrity considerations

For information on running DL/I programs in z/OS batch, see Chapter 13,
“Preparing and Running Generated Programs in z/OS Batch,” on page 101.

Defining the Program Specification Block (PSB)
The following list shows considerations for defining a PSB that is used in the z/OS
batch environment:
v DL/I PSBs used in the z/OS batch environment must have CMPAT=YES

specified in the PSBGEN statement for the PSB. This enables you to use the
CHKP and ROLB functions with the PSB.

v The PSBGEN statement must include the parameter LANG=COBOL or
LANG=ASSEM.

v DL/I PSBs used in the z/OS batch environment must be defined with a
minimum of two PCBs of any type in the PSB. This enables the generated
COBOL program to test whether it is being started from the IMS region

48 IBM Rational COBOL Runtime Guide for zSeries

controller or from an OS XCTL macro in a non-EGL program passing working
storage and dliLib.psbData as parameters.

v z/OS batch programs can implement serial files as GSAM databases. These
GSAM files are treated as a special type of database and require a PCB in the
PSB. The GSAM PCBs must follow all database PCBs.

Recovery and Database Integrity Considerations
In z/OS batch DL/I programs, a commit point causes a DL/I basic CHKP
(checkpoint) call. The contents of dliLib.psbData are used as the checkpoint
identifier. After the CHKP call, dliVar.statusCode contains the status code returned
with the CHKP call.

If the program runs under the TSO terminal monitor program for SQL access,
calling the sysLib.rollback() system function results in an SQL ROLLBACK
WORK.

If the program runs as a DL/I batch job, and DL/I or SQL requests have been
issued, calling the sysLib.rollback() system function results in a DL/I ROLB call.
The IMS batch parameter BKO=Y must be specified when the batch job is started
in order for the ROLB call to be honored. The BKO parameter is specified in the
job step that calls the IMS control program DFSRRC00. If BKO=N is specified,
DL/I returns status code AL for the ROLB call. Rational COBOL Runtime treats the
AL as a soft error, and no error message is issued.

Serial or print files associated with GSAM files and the sysLib.audit system
function result in DL/I requests and cause the DL/I ROLB call to be issued. For
information on when a commit point or rollback is issued, refer to the EGL help
topic "Logical unit of work."

Considerations for Calling CICS programs from z/OS batch
You must set up the CICS region to receive EXCI calls. For information, see “CICS
Setup for Calling CICS Programs from z/OS Batch” on page 93.

Performance Considerations for z/OS Batch
See “Modules in Memory” on page 28 for information on performance
considerations and the methods used to place modules in memory. These methods
are particularly beneficial if the EGL program is being called repeatedly by a
non-EGL program.

If you are running generated programs in z/OS batch and are accessing indexed or
relative files, you do not need to use the forUpdate option on the I/O statement
prior to a delete or replace statement. Eliminating the forUpdate option allows for
better performance, as it eliminates a COBOL read. However, make sure that you
perform a get or get next before the delete or replace to ensure that the record is
available.

Runtime JCL
See Chapter 13, “Preparing and Running Generated Programs in z/OS Batch,” on
page 101 for examples of batch runtime JCL.

Chapter 7. System Considerations for z/OS Batch 49

50 IBM Rational COBOL Runtime Guide for zSeries

Chapter 8. System Considerations for IMS

This chapter provides additional administrative information that applies to the IMS
environments.

The following information is discussed:
v Required file descriptions
v Defining the program specification block
v Processing modes
v Printing considerations for IMS
v Recovery and database integrity considerations
v Considerations that affect performance
v Considerations for using DB2
v Considerations for using DL/I
v Maintaining the work database
v Consideration for Message Format Services

Required File Descriptions
Rational COBOL Runtime requires the following files:

File Name Description

ELASNAP This is an optional file that contains the snap dump listing when a
Rational COBOL Runtime error occurs and the ELASNAP DD
statement was included in the startup JCL. This file has a 125-byte
logical record length, a 882-record block size, and a VBA
(variable-blocked ANSI) record format. If this file is directed to the
SYSOUT system logical unit, define it with RECFM=VBA and
BLKSIZE=4096.

ELAPRINT This file is an optional output file for Rational COBOL Runtime
error messages. This file has a fixed block record format, a 133-byte
logical record length, and a block size of 1330. If this file is directed
to the system logical unit SYSOUT, define it with RECFM=FBA and
BLKSIZE=1330.

ELADIAG This is the default name for the optional message queue for
Rational COBOL Runtime error messages.

This message queue is defined in the IMS system definition during
Rational COBOL Runtime installation. See “IMS Diagnostic
Message Print Utility” on page 135 for information about printing
the error messages contained in the ELADIAG message queue.

ELATRACE This is the trace control file for the IMS BMP environment. The
attributes for this data set are LRECL=80, DSORG=PS, and
BLKSIZE=multiple of 80. The trace filters are specified in the
ELATRACE data set.

ELATOUT The output of the Rational COBOL Runtime trace facility is sent to
this data set in the IMS BMP environment. The attributes for this
data set are LRECL=133, BLKSIZE=1330, and RECFM=FBA.

ELAT The output of the Rational COBOL Runtime trace facility is sent to
this output message queue in the IMS/VS environment. Use the
ELAMQJUD job to retrieve the trace.

© Copyright IBM Corp. 1994, 2012 51

EZEPRINT This is the default message queue (IMS/VS) or output file (IMS
BMP) for print output from generated programs. For IMS BMP
programs, the print records are variable length. For single-byte
languages, define EZEPRINT with LRECL=137, BLKSIZE=141, and
RECFM=VBA. For double-byte languages, define EZEPRINT with
LRECL=654, BLKSIZE=658, and RECFM=VBA. If the file is
directed to the system logical unit SYSOUT, define it with
RECFM=VBA and BLKSIZE=4096.

Defining the Program Specification Block (PSB)
You need to define both an IMS PSB and an EGL PSB record for your program.
The EGL PSB record contains a subset of the information from the IMS PSB and is
used to build default segment search arguments (SSAs) for the EGL I/O
statements.

You need to generate an IMS PSB to correspond to the EGL PSB record. For
IMS/VS, the IMS PSB must have the same name as the load module for the
associated EGL program. A program control block (ACB) generation is also
required for the IMS/VS environment. For IMS BMP and DL/I batch, the IMS PSB
name does not have to match the program load module name.

When you define the PSBs for IMS programs, consider the following criteria:
v The PSBGEN statement must include the parameters CMPAT=YES, and

LANG=COBOL or LANG=ASSEM.
v The I/O PCB (program control block) is automatically supplied and does not

appear in the IMS PSB. You must include the I/O PCB in the EGL PSB record if
you specify the callInterfaceType=CBLTDLI property in your EGL program.

v Alternate PCBs are used to route output to terminals other than the originating
terminal, or to other transactions. Alternate PCBs must appear before the
database PCBs both in the IMS PSB and in the EGL PSB record.

v When an EGL program is generated for the IMS/VS or IMS BMP environment, a
modifiable alternate PCB and a modifiable express alternate PCB are required, in
that order, as the first two PCBs following the I/O PCB. Both of these PCBs
must have the parameters ALTRESP=NO and SAMETRM=NO. To avoid having
to edit your DL/I call modifications to adjust for the two required PCBs, include
these PCBs whenever you plan to generate a program for the IMS/VS or IMS
BMP target environments.

v IMS BMP programs can implement serial files as GSAM databases. These GSAM
files are treated as a special type of database and require a PCB in both the IMS
PSB and the EGL PSBRecord. The GSAM PCBs must follow all database PCBs.

If a DL/I work database is used, the PCB for this database must be included in the
IMS PSB. This PCB can be created using the macro ELAPCB and concatenating
ELA.V6R0M1;.ELASAMP as part of the SYSLIB in the PSBGEN procedure. Figure 7
on page 53 shows an example of the PCB expansion that occurs when ELAPCB is
used.

WORKDBD defaults to ELAWORK. The WORKDBD parameter must be used if the
DBD name is changed.

52 IBM Rational COBOL Runtime Guide for zSeries

If you specify (or default to) the
callInterfaceType=DLICallInterfaceKind.AIBTDLI property for your program, the
EGL program refers to the PCBs in the PSB by name rather than by position. The
default PCB names are as follows:
v IOPCB (required by IMS for the I/O PCB)
v ELAALT (the EGL default name for the modifiable alternate PCB)
v ELAEXP (the EGL default name for the modifiable express alternate PCB)
v ELAWORK (the EGL default name for the DL/I work database PCB).

Processing Modes
IMS requires segmented mode. Refer to the EGL help system for additional
information on segmented mode.

The spaSize="xxxx" build descriptor option determines whether a program runs as
IMS conversational (xxxx is greater than 0) or nonconversational (xxxx is 0). Refer
to the EGL Generation Guide for more information.

The work database is used for both conversational and nonconversational
processing to save information during a converse. In nonconversational mode, the
work database is also used to save information during a deferred
program-to-program message switch which results from a show statement. In
conversational mode, the scratch-pad area (SPA) is used to set the transaction
identifier and to save information during a program-to-program message switch.
Refer to the EGL Programmer's Guide for information on how the SPA is used for
program-to-program message switching.

Printing Considerations for IMS
From Rational COBOL Runtime, printing is initiated when a program processes a
print statement for an EGL printForm. Refer to the EGL help system for
information on defining forms for printers.

Printing is accomplished using MFS control blocks produced when the FormGroup
is generated. The default print destination in IMS is a message queue named
EZEPRINT. The printer destination can be changed at generation time. You can
also change the print destination at run time by changing the
converseVar.printerAssociation. Refer to the EGL help system for additional
information.

ELAPCB [WORKDBD=customer-dbd-name]

--- expands into ---

PCB TYPE=DB,DBDNAME=customer-dbd-name,PROCOPT=AP,KEYLEN=19
SENSEG NAME=ELAWCNTL,PARENT=0
SENSEG NAME=WORKLV01,PARENT=ELAWCNTL
SENSEG NAME=WORKLV02,PARENT=WORKLV01...
SENSEG NAME=WORKLV14,PARENT=WORKLV13
SENSEG NAME=MSGLV01,PARENT=ELAWCNTL
SENSEG NAME=MSGLV02,PARENT=MSGLV01...
SENSEG NAME=MSGLV14,PARENT=MSGLV13

Figure 7. Generating the DL/I Work Database PCB

Chapter 8. System Considerations for IMS 53

Recovery and Database Integrity Considerations
EGL programs can make use of all the IMS recovery and data integrity features.

If your program makes changes to a recoverable resource, the changes are not
committed until the end of a logical unit of work (LUW). If your program
abnormally ends before the end of an LUW, all changes that were made since the
beginning of the LUW are backed out. For information on when an LUW ends, see
the EGL help topic "Logical unit of work."

Considerations that Affect Performance
This section describes factors that affect system performance and suggestions on
how to improve performance.

Residency Considerations and the IMS Preload Function
The performance of a program is affected by the number of times a disk is
accessed while running the program. Programs require access to disks for the
following reasons:
v Locating and loading Rational COBOL Runtime load modules
v Retrieving and storing user data
v Locating and loading application, FormGroup format modules, MFS print

services programs, and table load modules

Rational COBOL Runtime loads objects as they are needed. For example, Rational
COBOL Runtime loads a program, MFS print services program, FormGroup format
module, or DataTable when another program calls or references it. The overhead of
locating and loading modules can be reduced by using the IMS preload function.
Preloading an object reduces the amount of I/O required for multiple loads.
However, preloading generated programs requires more virtual storage for your
system because preloaded modules remain in storage until the message region is
shut down.

It is usually not possible for everything to be preloaded. Therefore, you should
establish priorities for deciding which objects you should preload. These
preloading priorities reflect a trade-off between your program usage and your
storage constraints. Because of individual considerations such as storage
constraints, environment, and types of programs, your priorities might dictate that
some components (such as MFS print services programs) for a program be
preloaded, while other components (such as DataTables) should not be preloaded.
Make the decision on what modules to preload on an individual basis, according
to how the program uses them.

When deciding what to preload, consider the following:
v Storage constraints
v Frequency of program use
v Long-running programs as compared to programs that are started more

frequently

Generally, objects that are loaded more than once are prime candidates for
preloading. Examples of this are a DataTable that is used by more than one
program and a program that is called more than one time. The following are some
general rules for preloading:
v When deciding what to preload, consider the following objects:

– Called programs
– MFS print services programs

54 IBM Rational COBOL Runtime Guide for zSeries

– FormGroup format modules
– DataTables
– Main programs

v Programs that are started or referenced frequently should be preloaded. In
addition to programs that are loaded by IMS when a transaction is scheduled,
this includes programs that are started by the EGL transfer to program or call
statements.

v Programs that are not frequently initiated should not be preloaded.

See “Preloading Generated Programs” on page 56 for additional information.

Preloading Rational COBOL Runtime Modules
For best performance, use the preload option for the following Rational COBOL
Runtime modules:
v ELARPRTR, the Rational COBOL Runtime module that handles address mode

switching
v ELARPRTM, the Rational COBOL Runtime load module
v ELARPIOP, the installation options module
v ELARIccc (where ccc is the language code), the language-dependent options

module
v ELACNccc (where ccc is the language code), the conversion table
v ELANCccc (where ccc is the language code), the module for Rational COBOL

Runtime constants and the table that converts from lower case to upper case
v ELARSCNT, the configuration table
v ELA2SSQW, the module that supports the DB2 work database
v ELARSDCB, which is used for accessing Rational COBOL Runtime sequential

files
v ELA2SSQL, its alias ELA2SSQY, and ELA2SSQX

ELA2SSQL, its alias ELA2SSQY, and ELA2SSQX are used to gain access to the
DB2 work database, and they support commit and rollback processing for DB2
program databases. Preload these modules only if you are using programs that
were generated and bound using CSP/370RS V1R1.

The modules ELARSDCB and ELANCccc are loaded below the 16MB line.
ELARSDCB is used only in reporting errors detected by Rational COBOL Runtime.
Both can be omitted from the preload list if storage space below the 16MB line is
limited.

Note: You should also monitor the usage of the LE runtime modules. Because
many are used by the generated COBOL programs, these modules might
also be candidates for preloading.

Refer to the IMS documentation for your system for information on the preload
option. An alternative to preloading is to place modules in the link pack area.

Loading Rational COBOL Runtime Modules into the Link Pack
Area
Placing modules in the link pack area causes all regions to share a single copy of
the modules and saves storage space. Refer to the Rational COBOL Runtime
program directory for information about what modules can be put into the link
pack area.

Chapter 8. System Considerations for IMS 55

Only one version of CSP/370RS V2R1, CSP/370RS V1R1, VisualAge Generator
Server V1R2, Enterprise Developer Server or IBM Rational COBOL Runtime
modules can be placed in the link pack area. If multiple releases are installed
concurrently on the same system, override the link pack area by defining the
correct library in the STEPLIB or JOBLIB DD statements for the region.

Preloading Generated Programs
You can reduce the overhead of searching the STEPLIB, JOBLIB, link pack area,
and link list by preloading generated programs (application programs, online print
services programs, FormGroup format modules, and DataTable modules) that are
frequently used. However, in this case, virtual storage is still occupied by the
modules when they are not in use.

To improve response time, you might also preload any module associated with any
transaction that might require better performance, even though the module itself is
not frequently used.

To preload generated programs, do the following:
1. Put the module in a LNKLST library.
2. Include the module name in a preload member (DFSMPLxx, where xx is a

two-character ID that you select) in the IMS procedure library.
3. Indicate in the JCL for the IMS message region that the preload member is to

be included.

Database Performance
Database performance can be improved under IMS/ESA by defining
HIPERSPACE* buffer usage for IMS in the DFSVSMxx member. This is the same as
defining many buffers for the files, but has the advantage that the HIPERSPACE
buffers all come from 31-bit storage, not from within the IMS/ESA region. The
tuning of database buffer pools is recommended. Refer to the IMS manuals for
details on the tuning of database buffer pools.

If you have IMS/ESA installed and use a DL/I work database, make the work
database nonrecoverable to reduce the amount of logging that occurs. Making the
work database nonrecoverable might help improve performance.

Limiting MFS Control Blocks
Limiting the size and number of message format service (MFS) control blocks
might help improve performance. MFS is used for form support in the IMS
environment. MFS control blocks are generated using MFS utility control
statements.

You can reduce the size and number of MFS control blocks that are generated by
doing the following:
v In form definition, only include the screenSizes values that are used for the

application system. For additional information about the valid screenSizes
values, refer to the EGL help system.

v Include in the mfsDevice build descriptor option only the combinations of the
height, width, and devStmtParms properties that your installation or
application system uses. For additional information about specifying the
mfsDevice build descriptor option, refer to the EGL Generation Guide.

56 IBM Rational COBOL Runtime Guide for zSeries

Monitoring and Tuning the IMS System
You can track potential performance problems before they occur by checking
processing statistics on a regular basis. The following are some of the statistics to
monitor:
v Use the IMS monitor facilities to check transaction utilization. Consider

preloading programs or groups of programs which are frequently used.
v Use the IMS database monitor facilities to check how effectively the databases

are performing and using space.

You can also use the following tools to monitor IMS performance:
v IMS Performance Monitor for z/OS (program number 5655-G50). This tool

provides real-time status monitoring and alerts for IMS subsystems, as well as
access to recent historical data and detailed statistical reports.

v IMS Performance Analyzer for z/OS (program number 5655-R03). This tool
provides comprehensive performance analysis and tuning assistance for IMS,
including end-to-end transit analysis for transaction workloads and availability
of important resources such as databases and message queues.

Refer to the system administration manuals and the database administration guide
for your release of IMS for detailed information about monitoring the IMS online
system and DL/I databases.

Considerations for Using DB2 in IMS
This section discusses considerations for recovery, database integrity, and security
issues for DB2 programs.

For information on designing and generating DB2 programs for the IMS
environment, refer to the EGL help system.

For information on preparing DB2 programs for running in the IMS environment,
see Chapter 14, “Preparing and Running Generated Programs in IMS/VS and IMS
BMP,” on page 107.

Recovery and Database Integrity Considerations
EGL-generated programs can use all the recovery and data integrity features that
are provided by DB2 in the IMS environment.

Relational databases are recoverable resources. If your program makes changes to a
relational database, the changes are not committed to the database until the end of
a logical unit of work (LUW). If your program ends abnormally before the end of
an LUW, all changes that were made since the beginning of the LUW are backed
out. For information on when an LUW ends, see the EGL help topic "Logical unit
of work."

Checking Authorization
The database manager checks whether the program users have authority to gain
access to tables or to run programs. The type of checking done varies depending
on your system and the processing mode.

When using DB2 in generated COBOL programs, the program users must be
authorized to run the corresponding DB2 plan. For transaction-oriented regions,
the authorization ID depends on the type of IMS security being used:

Chapter 8. System Considerations for IMS 57

v If sign-on security is used, IMS provides the sign-on name as the authorization
ID.

v If sign-on security is not used, IMS provides the name of the originating
terminal as the authorization ID.

The DB2 plan used with a transaction has the same name as the program
associated with the transaction.

For batch-oriented regions, the authorization ID is the contents of the ASXBUSER
field, if valid, or the PSB name. The DB2 plan name is specified as one of the batch
program parameters.

For more information on IMS security mechanisms, refer to the appropriate IMS
manual.

Considerations for Using DL/I in IMS
This section discusses considerations for DL/I programs in the IMS environment.

See “Defining the Program Specification Block (PSB)” on page 52 for information
on defining a PSB for DL/I programs.

For information on designing and generating DL/I programs for the IMS
environment, refer to the EGL help system.

For information on preparing DL/I programs for running in the IMS environment,
see Chapter 14, “Preparing and Running Generated Programs in IMS/VS and IMS
BMP.”

Recovery and Database Integrity Considerations
EGL-generated programs can make use of all the recovery and data integrity
features that are provided for DL/I databases in the IMS environment.

DL/I databases are recoverable resources. If your program makes changes to a
DL/I database, the changes are not committed to the database until the end of a
logical unit of work (LUW). If your program ends abnormally before the end of an
LUW, all changes that were made since the beginning of the LUW are backed out.
For information on when an LUW ends, see the EGL help topic "Logical unit of
work."

Maintaining the Work Database in IMS
You should monitor and tune the DL/I and DB2 work databases just as you would
any other DL/I database or DB2 table. You can use the normal database
administration utilities to monitor these databases and to determine when they
need to be reorganized to improve performance.

The activities involved in maintaining the work database are the following:
v Deleting old records from the work database
v Expanding the work database
v Supporting multiple DL/I or DB2 work databases

Deleting Old Records from the Work Database
The terminal ID is the key for the records in the work database. Each record
contains a time stamp that indicates the last time the record was updated.

58 IBM Rational COBOL Runtime Guide for zSeries

Deleting old records from the database reduces the amount of disk space required
in the work database. You probably want to delete records in the following
situations:
v Some users might run a generated program only infrequently, less than once a

day, for example. In this case, you might want to delete old records on a daily or
weekly basis.

v Sometimes terminal names are changed or users are moved to terminals with
different names. In this case, new records are created for the new terminals, but
the old records are not automatically deleted.

The utilities that delete records from the DL/I and DB2 work databases validate
the date and time to ensure that your request does not result in deletion of records
that are less than 24 hours old.

DL/I Work Database
Figure 8 shows the JCL used to remove old records from a DL/I work database.
The JCL is supplied as member ELAWKJCD in the ELA.V6R0M1;.ELAJCL file.
Specify the records you want to delete by entering the date (in Julian format) and
time prior to which all records are to be deleted.

DB2 Work Database
Figure 9 on page 60 shows the JCL used to remove old records from a DB2 work
database. The JCL is supplied as member ELAWKJC2 in the ELA.V6R0M1;.ELAJCL
file. Specify the records you want to delete by entering the date (in Julian format)

//**
//** ELAWKJCD - JOBSTREAM TO CLEAN UP THE DLI WORK DATABASE
//** FOR IBM RATIONAL COBOL RUNTIME.
//**
//** LICENSED MATERIALS - PROPERTY OF IBM
//** 5655-R29 (C) COPYRIGHT IBM CORP. 1994, 2006
//** SEE COPYRIGHT INSTRUCTIONS
//**
//** STATUS = VERSION 6, RELEASE 0, LEVEL 1
//**
//** TO TAILOR THIS JOBSTREAM:
//** 1. COPY A JOBCARD.
//** 2. REPLACE DATE AND TIME STAMP VALUE WITH DESIRED
//** VALUE. ALL RECORDS WITH LESS THAN THAT DATE AND
//** TIME WILL BE DELETED.
//**
//** RETURN CODES
//** 0 - SUCCESSFUL COMPLETION
//** 12 - FATAL ERROR. INVALID INPUT
//** 16 - FATAL ERROR. PROCESSING TERMINATED
//**
//**
//*
//DLIWORK EXEC IMSBATCH,MBR=ELAWKPC1,
// PSB=ELAWKPB1,RGN=4096K
//G.STEPLIB DD
// DD
// DD DSN=CEE.SCEERUN,DISP=SHR
// DD DSN=ELA.V6R0M1;.SELALMD,DISP=SHR
//G.ELAPRINT DD SYSOUT=*
//G.SYSOUT DD SYSOUT=*
//G.SYSIN DD *
YYDDDHHMMSS

Figure 8. JCL to Remove Old Records from DL/I Work Database

Chapter 8. System Considerations for IMS 59

and time prior to which all records are to be deleted.

Expanding the Work Database
At times, you need to expand the work database. For example, you need to
expand the database when you expand the usage of an existing program system to
a larger user set comprising a much larger number of terminals that gain access to
EGL-generated programs.

DL/I Work Database
To expand the DL/I work database, perform the following steps:
1. Stop the DL/I database.
2. Unload the database using the old database description (DBD).

//**
//** ELAWKJC2 - JOBSTREAM TO CLEAN UP THE DB2 WORK DATABASE
//** FOR IBM RATIONAL COBOL RUNTIME.
//**
//** LICENSED MATERIALS - PROPERTY OF IBM
//** 5655-R29 (C) COPYRIGHT IBM CORP. 1994, 2006
//** SEE COPYRIGHT INSTRUCTIONS
//**
//* STATUS = VERSION 6, RELEASE 0, LEVEL 1
//**
//** TO TAILOR THIS JOBSTREAM:
//** 1. COPY A JOBCARD.
//** 2. REPLACE DATE AND TIME STAMP WITH THE DESIRED DATA.
//** ALL ROWS WITH A DATE AND TIME LESS THAN THE
//** SPECIFIED DATE/TIME WILL BE DELETED.
//**
//** RETURN CODES
//** 0 - SUCCESSFUL COMPLETION
//** 12 - FATAL ERROR. INVALID INPUT
//** 16 - FATAL ERROR. PROCESSING TERMINATED
//**
//**
//*
//DB2WORK EXEC PGM=ELAWKPC2,REGION=4096K
//STEPLIB DD DSN=CEE.SCEERUN,DISP=SHR
// DD DSN=ELA.V6R0M1;.SELALMD,DISP=SHR
//SYSOUT DD SYSOUT=*
//SYSABOUT DD SYSOUT=*
//ELAPRINT DD SYSOUT=*
//ELASNAP DD SYSOUT=*
//EZESPUFI DD DSN=&&TMP1,DISP=(NEW,PASS),
// UNIT=SYSDA,SPACE=(TRK,(1,0)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=80)
//SYSIN DD *
YYDDDHHMMSS
//*
//DB2SPUF EXEC PGM=IKJEFT01,REGION=4096K,COND=(0,NE)
//STEPLIB DD DSN=DSN.RUNLIB.LOAD,DISP=SHR
//SYSOUT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSIN DD DSN=&&TMP1,UNIT=SYSDA,DISP=(OLD,DELETE)
/*
//SYSTSIN DD *

DSN SYSTEM(DSN)
RUN PROGRAM(DSNTIAD) PLAN(DSNTIA??)

END
/*

Figure 9. JCL to Remove Old Records from DB2 Work Database

60 IBM Rational COBOL Runtime Guide for zSeries

3. Change the DBD information and perform a DBD generation.
4. If you are having application control blocks (ACBs) prebuilt rather than built

dynamically, build the ACBs again.
5. Delete the space allocated for the old database and allocate space for the new

definition.
6. Load the database using the new DBD.
7. Make an image copy of the new database for back-up purposes as soon as it is

loaded.

Refer to the database administrator's guide and the IMS utilities manual for
additional information.

DB2 Work Database
You might need to expand the table spaces containing the DB2 work database
because of degraded performance from too many secondary extents, or because the
application users receive a DB2 message DSNP007I indicating that no more space
is available.

Ideally, when the size of a DB2 table space is increased, the primary extent should
be made large enough to accommodate all the data in the work database. In any
case, try to minimize the number of secondary extents required to store rows in the
database.

The method you use to expand the table space depends on the version of DB2 that
is installed and whether the table space is user-managed.

The procedure supplied with Rational COBOL Runtime that installs the work
database also installs the table space as user-managed table space (no associated
DB2 storage group).

Before attempting to change the size of the table space data set, you need to
estimate the space requirements for the table space. One factor in your estimate is
the amount of space currently used. If the space is currently DB2-managed
(resulting from an earlier change in space allocation), you can get this information
by first running the DB2 STOSPACE utility against the table space storage group,
and then running the following query:
SELECT SPACE

FROM SYSIBM.SYSTABLEPART
WHERE TSNAME=’tsname’ and DBNAME=’dbname’;

The result (SPACE) gives the number of kilobytes of storage currently allocated to
the table space.

If the space for the table space is user-managed, you can use the TSO LISTCAT
command to obtain the space information. You need to know the data set name of
the VSAM file used for table space. The data set name for the VSAM file has the
following format:
catname.DSNDBC.dbname.tsname.I0001.Annn

where:

catname Specifies the VSAM catalog name or alias

This is the same name or alias as in the USING VCAT clause of the
CREATE TABLESPACE statement.

dbname Specifies the DB2 database name

Chapter 8. System Considerations for IMS 61

This is the same as the database name in the CREATE
TABLESPACE statement.

tsname Specifies the table space name

This is the same as the table space name in the CREATE
TABLESPACE statement.

nnn Specifies the data set number

For partitioned table spaces, the number is 001 for the first
partition, 002 for the second, and so forth, up to the maximum of
64 partitions. For a simple or segmented table space, the number is
001 for the first data set. If the simple or segmented table space
exceeds 2 gigabytes, the second data set is 002, and so forth.

To expand table space do the following:
1. Stop the DB2 database by using the command -STOP DB (dbname).
2. Make an image copy of the table space. You can use the image copy to restore

the data set if the procedure is not successful.
3. Create a storage group for the table space. Do this only if the table space

currently is user-managed and a storage group is not already available.
4. Change the table space definition as follows:

v If the table space data sets are user-managed, use a DB2 statement as
follows:
ALTER TABLESPACE dbname.tsname

USING STOGROUP stogrp
PRIQTY pppp SECQTY ssss

where:

dbname.tsname Specifies the name of the space

stogrp Specifies the name of the storage group

pppp Specifies new primary allocation size (in
kilobytes) for the expanded table space

ssss Specifies new secondary allocation size (in
kilobytes) for the expanded table space

Note: This statement changes the table space from user-managed to
DB2-managed.

v If the table space data sets are already DB2-managed, use a DB2 statement as
follows:
ALTER TABLESPACE dbname.tsname

PRIQTY pppp SECQTY ssss

where:

dbname.tsname Specifies the name of the space

pppp Specifies new primary allocation size (in
kilobytes) for the expanded table space

ssss Specifies new secondary allocation size (in
kilobytes) for the expanded table space

5. Move the table space data. Simply changing the table space definition does not
put the new size into effect. You need to move the table space to the newly
allocated space. You can, for example, reorganize the table space using the DB2
REORG utility.

62 IBM Rational COBOL Runtime Guide for zSeries

6. Start the DB2 database. Enter the command -START DB (dbname).

Supporting Multiple Work Databases
You can use separate work databases for different application systems. For
example, you might want to use separate databases for payroll and shipping to
improve performance or to increase data availability. The work database is used to
pass information during certain types of program-to-program message switches
between applications. When this occurs, both the transferring application and the
transferred-to application must use the same physical work database.

DL/I Work Databases
To create an additional DL/I work database called ELAWORK2, do the following:
1. Copy the ELAWORK DBD in the ELA.V6R0M1;.ELASAMP file, and name it

ELAWORK2.
2. Change the NAME parameter on the DBD statement to ELAWORK2. Also

change the DD1 parameter on the DATASET statement to ELAWORK2. Make
any other changes to the block size, number of blocks, and randomizing routine
based on the application system requirements.

3. Make copies of the ELAWKLD and ELAWKPB1 program specification blocks
(PSBs) in the ELA.V6R0M1;.ELASAMP file and give them new member names.
Change the NAME parameter on the program control block (PCB) statement
from ELAWORK to ELAWORK2.

4. Modify job ELACJWKD in the ELA.V6R0M1;.ELAJCL file to refer to the new
database. This job does the DBD, PSB, and ACB generations needed for the
work database, allocates the database, and then initializes it. You need to
change the DD and data set names for the work database, and name the new
DBD and PSB.

5. Add the new database to the JCL for your IMS control region, and to your IMS
stage-1 system definition.

6. When you create IMS PSBs for applications that need to use this new database,
use the ELAPCB macro to create the PCB definition for the work database.
Enter the following command:

ELAPCB WORKDBD=ELAWORK2

7. If you specify (or default to) the
callInterfaceType=DLICallInterfaceKind.AIBTDLI property for your program,
specify the PCBName property for the ELAWORK database in your EGL PSB
record as follows:
ELAWORK DB_PCBRecord {@PCB {pcbType = PBKind.DB, PCBName = "ELAWORK2"}};

DB2 Work Databases
To create an additional DB2 work database, do the following:
1. Create an ELAWORK table using the ELACJWK2 job in the

ELA.V6R0M1;.ELAJCL file. Perform the following steps before running the job:
a. Add an authorization ID to the CREATE TABLE command in ELAWORK2

in the ELA.V6R0M1;.ELASAMP file, for example:
CREATE PAYROLL.ELAWORK

b. Change the table space name and index in ELAWORK2.
c. Change the DELETE and DEFINE CLUSTER statements to use the table

space name and index you specified in ELAWORK2.
d. Comment out the WRKDROP step to avoid dropping the existing work

database.

Chapter 8. System Considerations for IMS 63

2. Each developer or system administrator using the payroll ELAWORK table
needs to create a SYNONYM for the table. The following example shows how
to use the CREATE SYNONYM command to create a synonym:
CREATE SYNONYM ELAWORK FOR PAYROLL.ELAWORK

The default BIND commands generated by EGL bind DBRMs for Rational
COBOL Runtime modules to the program being generated. The CREATE
SYNONYM command ensures that developers referencing the ELAWORK table
use the payroll version of the table.

Considerations for Message Format Services in IMS
EGL generates message format services (MFS) source statements used for
conversing and printing forms in IMS environments. The generated MFS source
includes DEV statements, which identify the device types on which forms can be
displayed and the characteristics of those devices. The device types and
characteristics must be compatible with the device types and characteristics defined
in the TERMINAL and TYPE macros in your IMS system definition.

The information on the generated MFS DEV statements is controlled by the
mfsExtendedAttr, mfsIgnore, and mfsDevice build descriptor options. Review
your TERMINAL and TYPE definitions and then set the mfsExtendedAttr,
mfsIgnore, and mfsDevice build descriptor options to reflect your IMS system
definition.

The following build descriptor options affect the generated MFS source:

mfsExtendedAttr
Specifies whether EGL generation includes extended attributes for the MFS
DFLD statements if the information for the device size is not completely
specified in the mfsDevice build descriptor option. The following values
are valid:

NO NO specifies that extended attributes are not to be used. Specify
NO if most of your devices do not support color or extended
highlighting. NO specifies that EGL generation should omit the
EATTR parameter from the MFS DFLD statements unless
overridden by the mfsDevice build descriptor option for a specific
device.

YES YES specifies that you want the default handling for extended
attributes on the MFS DFLD statement. Specify YES if all of your
devices support extended attributes (for example, devices that
support color or extended highlighting), and you want EGL
generation to include the CD (color default) extended attribute
value when generating a form field that is defined with color =
mono (monchromatic). YES specifies that EGL generation should
include the EATTR parameter for MFS DFLD statements unless
overridden by the mfsDevice build descriptor option for a specific
device. YES is the default value.

NCD NCD specifies that EGL generation should include the EATTR
parameter, but not include the CD extended attribute value for the
MFS DFLD statements when generating a form field that is defined
with color = mono.

The mfsExtendedAttr build descriptor option specifies how the DFLD
statements for a specific device are to be generated if the EATTR, NCD, or
NOEATTR parameter is not included in the mfsDevice build descriptor

64 IBM Rational COBOL Runtime Guide for zSeries

option for a particular device size. If EATTR, NCD, or NOEATTR is
specified for a particular device size in the mfsDevice build descriptor
option, the mfsExtendedAttr build descriptor option has no effect for that
device size.

mfsIgnore
Specifies the information EGL generation includes for the MFS MSG
statement for the message input descriptor (MID) and message output
descriptor (MOD). The following values are valid:

YES Specifies that you want EGL generation to include SOR= (...,
IGNORE) on the MFS MSG statement for the MID and the MOD.
Specify YES only if the mfsDevice option specifies FEAT=IGNORE
for all the devices used by the FormGroup you are generating.

NO Specifies that you do not want EGL generation to include the SOR
parameter on the MFS MSG statement for the MID and the MOD.
The default is NO.

mfsDevice
Specifies the information that EGL generation uses for the MFS DEV and
DFLD statements. This build descriptor option provides the
correspondence between the EGL device size information that a developer
specifies for a form and the device information that must be included for
the MFS DEV statements.

To specify the mfsDevice build descriptor option, edit your build
descriptor part using the EGL Build Parts Editor. In the upper right corner
of the EGL Build Parts Editor window, click the Show MFS Devices
Properties icon. The MFS Devices Properties editor appears. You can enter
the following information:

Height
The number of lines that can be displayed on the device (for
example, 24). This attribute is required.

Width The number of columns that can be displayed on the device (for
example, 80). This attribute is required.

Device Statement Parameters
A string that contains one or more parameters you want EGL to
include when generating the MFS DEV statement. Base this
information on the TERMINAL and TYPE macros in your IMS
system definition. This attribute is required.

Extended Attributes
Indicates whether the device supports extended attributes and
whether a color default (CD) extended attribute is generated for
form fields that are displayed on monochromatic devices. Your
choice affects the EGL-generated MFS DFLD statements. If you
specify this attribute, the value of build descriptor option
mfsExtendedAttr is ignored when you generate form information
for the device. Valid values are as follows:

YES (the default)
Extended attributes are supported, and a color default
extended attribute is generated.

NCD Extended attributes are supported, but a color default
extended attribute is not generated.

NO Extended attributes are not supported.

Chapter 8. System Considerations for IMS 65

Note:

v The combination of Height and Width must match the
values for the screenSizes property that developers
specify for textForms and the values for the formSize
property that developers specify for printForms.

v You can repeat the combination of Height and Width as
many times as necessary to provide the correspondence to
all your physical devices that match that device size. For
example, if for screenSize =[24,80] for a textForm, you use
both a 3270-A2 and a 3270-A3, you should include two
entries for Height=80, Width=24, one for each device that
you use.

v Include entries only for physical devices that you actually
use. Including devices that you do not use increases the
MFS control block size and can degrade performance.

If you do not specify the mfsDevice build descriptor option, the default
value is shown in the following table.

Table 9. Default values for mfsDevice build descriptor option

Height Width Device Statement Parameters
Extended
Attributes

80 24 TYPE=3270-A2,FEAT=(IGNORE) YES

80 24 TYPE=(3270-2),FEAT=(IGNORE) YES

132 255 TYPE=3270P,WIDTH=133,PAGE=(255,DEFN),FEAT=2 YES

The following table shows the relationship between the mfsIgnore and mfsDevice
build descriptor options and the FEAT parameter for the TERMINAL and TYPE
macros in the IMS system definitions.

Table 10. Relationship between mfsIgnore, mfsDevice, and the IMS System Definition

mfsIgnore

MFS MSG
Statement for MID /
MOD

mfsDevice FEAT
Parameter

IMS System
Definition FEAT
Parameter

YES SOR=(xxxx,IGNORE) FEAT=IGNORE (see
Note 1)

FEAT=IGNORE or
FEAT=n

YES(2) FEAT=n (see Note 2)

SOR=xxxx FEAT=IGNORE (see
Note 3)

FEAT=IGNORE

SOR=xxxx FEAT=n (see Note 3) FEAT=n

Note:

1. The value for FEAT in the mfsDevice build descriptor option does not
need to match the value for FEAT in the IMS TERMINAL or TYPE
macro.

2. This combination of the mfsIgnore and mfsDevice build descriptor
options is not valid. Generation ignores any device that uses this
combination because the combination is not supported by MFS.

3. The value for FEAT in the mfsDevice build descriptor option must
exactly match the value specified for FEAT in the IMS TERMINAL or
TYPE macro.

66 IBM Rational COBOL Runtime Guide for zSeries

The following table shows parameters from the TERMINAL and TYPE macros in
your IMS system definition that you can code for the Device Statement
Parameters in the mfsDevice build descriptor option. Do not code other MFS
parameters for the MFS DEV statement in the mfsDevice build descriptor option.

Table 11.

Description Device Statement Parameters
Optional Device Statement
Parameters

3270 Display or 5550
Display

(3270,1), (3270,2), 3270-An (see
Note 1)

FEAT

3270 Printer 3270P FEAT, WIDTH (see Note 2),
PAGE (see Note 3)

SCS1 Printer or 5550P
Printer

SCS1 FEAT, WIDTH (see Note 4),
PAGE (see Note 3)

Note:

1. The n in 3270-An is any number from 1 through 15.
2. If WIDTH is coded, FEAT must be coded. WIDTH must be a value 1

greater than the width for the Width attribute for the device size because
the last column is used by MFS for carriage control. To have
compatibility for a 3270 printer, use FEAT=n (where n is a value from 1
through 10 and matches your IMS system definition), WIDTH=133,
PAGE=(255,DEFN).

3. If PAGE is coded and the second parameter is given, it must be DEFN.
DEFN is the default.

4. To have compatibility for a SCS1 printer, use the following settings:
v For a single-byte printer, use WIDTH=132, PAGE=(255,DEFN).
v For a double-byte printer (such as a 5550P), use WIDTH=158,

PAGE=(255,DEFN).

For assistance in setting the values for the mfsExtendedAttr, mfsIgnore, and
mfsDevice build descriptor options, refer to the IMS system definition reference
manual for your release of IMS for additional information on the parameters for
the TERMINAL and TYPE macros. Also refer to the stage 1 system definition
macros for your IMS system to determine the parameters actually used for your
installation. Refer to the MFS manuals for your release of IMS for additional
information about the DEV statement.

If you have IMS systems that are not generated from EGL, you might also want to
look at some MFS source from those systems to see the parameters that you
specify on the MFS DEV statement.

Once you have determined the correct values for the mfsDevice, mfsExtendedAttr,
and mfsIgnore build descriptor options, code the default build descriptor options
in all the default build descriptor files that you use when generating for the
IMS/VS or IMS BMP target environments.

The following table lists some example values that you might want to use for the
mfsDevice build descriptor option.

Chapter 8. System Considerations for IMS 67

Table 12. Example values for mfsDevice build descriptor option

Height Width Device Statement Parameters
Extended
Attributes

80 24 TYPE=3270-A2,FEAT=(IGNORE) YES

80 24 TYPE=(3270-2),FEAT=(IGNORE) YES

80 24 TYPE=3270-A3,FEAT=(IGNORE) YES

80 43 TYPE=3270-A4,FEAT=(IGNORE) YES

132 27 TYPE=3270-A7,FEAT=(IGNORE) YES

132 255 TYPE=3270P,WIDTH=133,PAGE=(255,DEFN),FEAT=2 YES

132 255 TYPE=SCS1,WIDTH=132,PAGE=(255,DEFN) YES

132 255 TYPE=SCS1,WIDTH=158,PAGE=(255,DEFN) YES

68 IBM Rational COBOL Runtime Guide for zSeries

Part 3. Preparing and Running Generated Applications

Chapter 9. Output of Program Generation on
z/OS Systems 71
Allocating Preparation Data Sets 71
List of Program Preparation Steps after Program
Generation 73

Deploying generated code to USS 74
Output of Generation 74

Objects Generated for Programs 77
Application COBOL Program 77
Sample Runtime JCL 77
Bind Commands. 78

Link Edit File. 78
CICS Entries 78
Objects Generated for DataTables 78

DataTable COBOL Program 78
Objects Generated for FormGroups 79

Online Print Services Program 79
Batch Print Services Program 79
FormGroup Format Module 79
MFS Print Services Program 79
MFS Source 79
COBOL Copybook for MFS MID/MOD
Layout 79

Chapter 10. z/OS Builds. 81
z/OS Build Server 82

Starting a z/OS Build Server 83
Starting a USS Build Server 85
Stopping servers. 85
Configuring a build server 85

Working with Build Scripts 85
Working with z/OS Build Scripts 85

Writing a JCL build script 87
File Name Conversions for z/OS 87

Converting JCL to Pseudo-JCL 87

Chapter 11. Preparing and Running a Generated
Program in CICS 91
Modifying CICS Resource Definitions 91

Program Entries 91
Transaction Entries 92
Destination Control Table Entries 92
File Control Table Entries 93
DB2 Entries 93
Using Remote Programs, Transactions, or Files . 93

CICS Setup for Calling CICS Programs from z/OS
Batch 93
CICS Setup for Calling z/OS Batch Programs in
CICS 93
Modifying CICS Startup JCL. 94
Making New Modules Available in the CICS
Environment 94
Making Programs Resident 95
Running Programs under CICS 95

Starting the Transaction in CICS 95

Controlling Diagnostic Information in the CICS
Environment 95
Printing Diagnostic Messages in the CICS
Environment 95

Chapter 12. Creating or Modifying Runtime JCL
on z/OS Systems 97
Tailoring JCL before Generation 97
Modifying Runtime JCL 98

Chapter 13. Preparing and Running Generated
Programs in z/OS Batch 101
Running Main Programs under z/OS Batch . . . 101
Examples of Runtime JCL for z/OS Batch
Programs 101

Running a Main Basic Program with No
Database Access 102
Running a Main Basic Program with DB2
Access. 102
Running Main Basic Program with DL/I Access 103
Running a Main Basic Program with DB2 and
DL/I Access 104

Recovery and Restart for z/OS Batch Programs 105

Chapter 14. Preparing and Running Generated
Programs in IMS/VS and IMS BMP 107
Modifying the IMS System Definition Parameters 107

Defining an Interactive Program 107
Defining Parameters for a Main Basic Program
as an MPP 108
Defining Parameters for a Batch-Oriented BMP
Program 109
Defining Parameters for a Transaction-Oriented
BMP Program 109

Creating MFS Control Blocks 109
Making New Modules Available in the IMS
Environment 110
Preloading Program, Print Services, and DataTable
Modules 110
Running Programs under IMS 111

Starting a Main Program Directly 111
Starting a Main Transaction Program Using the
/FORMAT Command 111
Running Transaction Programs as IMS MPPs 111

IMS Commands 111
Keyboard Key Operation 112
DBCS Data on a Non-DBCS Terminal . . . 112
Error Reporting. 112
Responding to IMS Error Messages 112

Running Main Basic Programs as MPPs . . . 113
Running a Main Basic Program under IMS BMP 113
Examples of Runtime JCL for IMS BMP Programs 114

Running a Main Basic Program as an IMS BMP
Program 114

© Copyright IBM Corp. 1994, 2012 69

Running a Main Basic Program as an IMS BMP
Program with DB2 Access 115

Recovery and Restart for IMS BMP Programs. . . 116

Chapter 15. Moving Prepared Programs to
Other Systems from z/OS Systems 117
Moving Prepared Programs To Another z/OS
System 117
Maintaining Backup Copies of Production Libraries 118

70 IBM Rational COBOL Runtime Guide for zSeries

Chapter 9. Output of Program Generation on z/OS Systems

This chapter provides an overview of the files produced at generation time and of
the steps needed to prepare code for use at run time.

Output files are transferred to z/OS, where preparation steps include running
translators, precompilers, and compilers; doing link-edits; and defining control
tables for the target runtime environment.

For additional information on the output of program generation, refer to the EGL
Generation Guide in the online help.

Allocating Preparation Data Sets
EGL COBOL generation creates and runs a build plan file. The build plan file
controls the transfer of generated objects to the z/OS host and the execution of
build scripts that are used to prepare the other output of generation.

The transferred objects are stored in partitioned data sets. You allocate the required
data sets using the ELACUSER CLIST shipped in the Rational COBOL Runtime
data set that has the low-level qualifier ELACLST. This CLIST was customized at
product installation to set keyword default values to settings appropriate for your
environment.

For you to use this CLIST, your customized data set must be placed before the
Rational COBOL Runtime data set that has the low-level qualifier SELACLST in
the SYSPROC concatenation list. Make sure that every COBOL generation user has
the required data sets allocated for every target runtime environment in which the
product will be used.

The following keyword parameters within CLIST ELACUSER may either be
customized within the CLIST or overridden when executing the CLIST:

Keyword Possible Values

ZOSBATCH

v Y = allocate user data sets for this environment
v N = do not allocate user data sets for this environment

ZOSCICS

v Y = allocate user data sets for this environment
v N = do not allocate user data sets for this environment

IMSBMP

v Y = allocate user data sets for this environment
v N = do not allocate user data sets for this environment

IMSVS

v Y = allocate user data sets for this environment
v N = do not allocate user data sets for this environment

VOL vvvvvv = serial number

UNIT uuuuu = valid unit name

© Copyright IBM Corp. 1994, 2012 71

HLQ hhhhhhhh = high-level qualifier for user data sets

CLST

v FB = allocate a fixed blocked CLIST library
v VB = allocate a variable blocked CLIST library

DB2

v Y = DB2 databases will be used with this product
v N = DB2 databases will not be used with this product

CBLK cccccc = CLIST data set block size

LBLK llllll = load library data set block size

An example of the command syntax to execute the CLIST is as follows:
ex ’myRuntime.v5r0m0.elaclst(elacuser) zoscics(y) zosbatch(y)
vol(at1235) unit(sysda) hlq(tsouid) db2(y)’

Table 13 describes the data sets that are allocated. The DD name in the table is the
DD name in the build scripts that are used by the build server. The meaning of
lower-case strings in the data set name is as follows:

cghlq The high-level qualifier specified for the HLQ parameter in the ELACUSER
CLIST.

env The generation environment. One of these:
v ZOSBATCH (for z/OS batch)
v ZOSCICS (for z/OS CICS)
v IMSVS (for IMS/VS)
v IMSBMP (for IMS BMP)

Table 13. Program Preparation User Data Set Information

DD Name Data Set Name Description DCB Information
Target En-
vironment

DBRMLIB cghlq.env.DBRMLIB Database request
module library for
DB2 programs

DSORG=PO, RECFM=FB,
BLKSIZE=6160, LRECL=80

All z/OS, if
DB2 used

EZEBIND cghlq.env.EZEBIND Bind commands DSORG=PO, RECFM=FB,
BLKSIZE=6160, LRECL=80

All z/OS, if
DB2 used

EZECOPY cghlq.env.EZECOPY Generated message
input descriptor
(MID) and message
output descriptor
(MOD) layout
copybooks.

DSORG=PO, RECFM=FB,
BLKSIZE=6160, LRECL=80

IMSVS,
IMSBMP

EZEFOBJ cghlq.env.EZEFOBJ Form group format
object modules

DSORG=PO, RECFM=FB,
BLKSIZE=3120, LRECL=80

ZOSCICS,
IMSVS,
IMSBMP

EZEJCLX cghlq.env.EZEJCLX Basic program
runtime job stream

DSORG=PO, RECFM=FB,
BLKSIZE=6160, LRECL=80

ZOSBATCH,
IMSBMP

EZELINK cghlq.env.EZELINK Generated link edit
control file

DSORG=PO, RECFM=FB,
BLKSIZE=6160, LRECL=80

All z/OS

EZEMFS cghlq.env.EZEMFS Generated message
format services
control block source

DSORG=PO, RECFM=FB,
BLKSIZE=6160, LRECL=80

IMSVS,
IMSBMP

72 IBM Rational COBOL Runtime Guide for zSeries

Table 13. Program Preparation User Data Set Information (continued)

DD Name Data Set Name Description DCB Information
Target En-
vironment

EZEOBJ cghlq.env.OBJECT Object library DSORG=PO, RECFM=U,
BLKSIZE=6144, LRECL=0

All z/OS

EZEPCT cghlq.env.EZEPCT CICS PCT entries or
RDO TRANSACTION
entries

DSORG=PO, RECFM=FB,
BLKSIZE=6160, LRECL=80

ZOSCICS

EZEPPT cghlq.env.EZEPPT CICS PPT entries or
RDO PROGRAM
entries

DSORG=PO, RECFM=FB,
BLKSIZE=6160, LRECL=80

ZOSCICS

EZESRC cghlq.env.EZESRC COBOL source library
for generated
programs, libraries, or
services

DSORG=PO, RECFM=FB,
BLKSIZE=6160, LRECL=80

All z/OS

SYSLIN cghlq.env.ezelkg Link edit control
statements generated
from link edit parts

DSORG=PO, RECFM=FB,
BLKSIZE=3120, LRECL=80

All z/OS

SYSLMOD cghlq.env.LOAD Load library DSORG=PO, RECFM=U,
BLKSIZE=6144, LRECL=0

All z/OS

List of Program Preparation Steps after Program Generation
Rational COBOL Runtime supports program preparation and installation in the
z/OS environments using build scripts shipped with Rational COBOL Runtime.
You must perform the steps listed in Table 14 before you can run your program in
an z/OS target environment.

Table 14. Preparation Steps for z/OS Environments

Preparation Step Environment

Transfer from workstation to the host All

DB2 precompile DB2 use only

CICS translation CICS only

COBOL compile All

Link All

Bind DB2 use only. A bind is also required if the
first program in the run unit specifies a DB2
work database for IMS/VS

Additionally, for CICS and IMS environments, you must define your program and
transactions to the environment:
v For CICS, you do this using the Resource Definition Online (RDO) PROGRAM

and TRANSACTION entries. For information on CICS entries, see Chapter 11,
“Preparing and Running a Generated Program in CICS.”

v For IMS, define your program and transactions through the IMS system
definition. For information on the IMS system definition, see Chapter 14,
“Preparing and Running Generated Programs in IMS/VS and IMS BMP,” on
page 107.

Chapter 9. Output of Program Generation on z/OS Systems 73

Deploying generated code to USS
The setup for deploying generated Java code in USS is the same as for Windows.
Please see "Setting up the J2EE runtime environment for EGL-generated code" in
the EGL Generation Guide.

Output of Generation

After you generate a program, there are a number of objects that must be
transferred to the z/OS host system and then prepared before you can run the
program. During generation, EGL creates a build plan that controls the preparation
process through the use of build scripts. By default, the build scripts do the
following:
v Do not save the generated program source code or MFS source.
v Save the output of the preparation process (the DBRM, the object modules, and

the load modules) as members in PDS data sets on the z/OS host. You control
the high-level qualifier of the PDS data sets by setting the projectID build
descriptor option.

v Save the object modules, link edit file, and the bind control file because these
files are needed to recreate a load module without having to generate the
program again.

v Save the CICS entries because they are needed to install the program in CICS.
v Save the sample runtime JCL for z/OS batch and IMS BMP programs.

You cannot save a load module in a workstation repository and then restore it to a
z/OS host system. However, you can save the object deck, link edit file, and bind
control file and then relink and bind the object deck in a production z/OS
environment.

If you want to save the generated source code, you must modify the FDABCL,
FDABPTCL, FDABTCL, FDACL, FDAMFS, FDAPCL, FDAPTCL, and FDATCL
build scripts. There are instructions in the build scripts on how to do this by
removing the comment tag from certain lines and commenting others.

The following rules apply to using objects generated for one environment in a
different environment:
v Main programs cannot be generated for one environment and used in a different

environment.
v In general, FormGroup objects cannot be generated for one environment and

used in a different environment. However, if you generate a FormGroup for IMS
BMP or z/OS batch and specify the formServicePgmType="ALL" build
descriptor option, you can use the FormGroup output for the IMS/VS, IMS BMP,
and z/OS batch environments because this causes generation of all the output
required to support MFS, GSAM, and SEQ print files. However, you must
ensure that the resource association information is identical for IMS/VS and IMS
BMP when using the MFS print forms and is identical for IMS BMP and z/OS
batch when using GSAM or SEQ print forms.

v DataTables generated and prepared in one environment (whether CICS, z/OS
batch, or IMS) can be used in another environment on the same system.

v A CICS application can call a common batch application as long as it does not
perform any file I/O. You must call the application using the DYNAMIC and
OSLINK linkage options and the called program must be generated for the z/OS
batch environment.

74 IBM Rational COBOL Runtime Guide for zSeries

v An IMS or IMS BMP application cannot call a common batch application.
v CICS and IMS applications can use common libraries under the following

conditions:
– The library must be generated for the z/OS Batch environment.
– The library cannot perform any SQL or file I/O.

Table 15 provides information about the types of files produced by generation,
including:
v Type of object produced
v Low-level qualifiers of the default PDS name to which the object is written if the

build scripts are customized to save the generated files
v How the member name is derived
v Runtime environments for which the object is produced
v Whether production is controlled by a COBOL build descriptor option
v Whether the object can be modified after generation is performed

A description of each object begins on page 77.

For additional information on generation output, refer to the EGL Generation Guide
in the help system.

You can specify an alias for a program, DataTable, or FormGroup, and that alias is
used for generated output. If you do not specify an alias, the default value is the
name of the part truncated to the requirements of the target environment.

The name given to the output includes the alias or the default name, as shown by
alias in the next table.

A bind control file is always generated and used in preparation for programs that
access an SQL database. You can specify your own bind control part to be used to
generate the bind control file using the bind build descriptor option, or you can
develop a bind control part with the same name as the program part. Otherwise, a
default bind control part is generated.

Table 15. Objects Generated for Programs, Libraries, or Services and Transferred to the z/OS Host by the Build
Scripts

File Type

PDS
Low-level
Qualifier

PDS Member
Name

File Name on
Workstation

z/OS Runtime
Environment

Build Descriptor
Option Modifiable

COBOL
program

EZESRC alias alias.cbl All None No

Sample
runtime JCL

EZEJCLX alias alias.jcx z/OS batch
IMS BMP

genRunFile Yes

Bind
command

EZEBIND alias alias.bnd All bind Yes

Link Edit File
generated
automatically
by EGL

EZELINK alias alias.led All None Yes

Chapter 9. Output of Program Generation on z/OS Systems 75

Table 15. Objects Generated for Programs, Libraries, or Services and Transferred to the z/OS Host by the Build
Scripts (continued)

File Type

PDS
Low-level
Qualifier

PDS Member
Name

File Name on
Workstation

z/OS Runtime
Environment

Build Descriptor
Option Modifiable

Link edit
control
statements
generated
from link edit
parts

EZELKG alias alias.lkg All linkedit Yes

Build Plan Not applicable
(see note 1)

Not applicable aliasBuildPlan
.xml

All prep No

CICS Entry
(See note 4)

EZEPPT alias alias.ppt CICS cicsEntries Review and
possible
modification
required

CICS Entry
(See note 2)

EZEPCT alias alias.pct CICS cicsEntries
startTransactionID
restartTransactionID

Review and
possible
modification
required

Table 16. Objects Generated for DataTables and Transferred to a z/OS Host by the Build Scripts

File Type
PDS Low-level
Qualifier

PDS Member
Name

z/OS Runtime
Environment

Build Descriptor
Option Modifiable

DataTable COBOL
program

EZESRC alias.cbl All genDataTables No

Table 17. Objects Generated for FormGroups and Transferred to a z/OS Host by the Build Scripts

File Type

PDS
Low-level
Qualifier

PDS Member
Name

File Name on
Workstation

z/OS
Runtime
Environment Build Descriptor Option Modifiable

Online print
services
program (see
note 3)

EZESRC alias alias.cbl CICS genFormGroup,
genHelpFormGroup

No

Batch print
services
program (see
note 3)

EZESRC aliasP1 aliasP1.cbl z/OS batch,
IMS BMP

genFormGroup,
genHelpFormGroup,
formServicePgmType

No

Form group
format
module (see
note 5)

EZEFOBJ aliasFM aliasFM.fmt z/OS CICS,
IMS/VS

genFormGroup ,
genHelpFormGroupformServicePgmType

No

MFS print
services
COBOL
program (see
note 3)

EZESRC alias alias.cbl IMS/VS
IMS BMP

genFormGroup,
formServicePgmType

No

MFS control
blocks

EZEMFS alias alias.mfs IMS/VS
IMS BMP

formServicePgmType,
genFormGroup,
genHelpFormGroup

No

76 IBM Rational COBOL Runtime Guide for zSeries

Table 17. Objects Generated for FormGroups and Transferred to a z/OS Host by the Build Scripts (continued)

File Type

PDS
Low-level
Qualifier

PDS Member
Name

File Name on
Workstation

z/OS
Runtime
Environment Build Descriptor Option Modifiable

COBOL
copybook for
MFS
MID/MOD
layout

EZECOPY alias alias.cpy IMS/VS
IMS BMP

formServicePgmType,
genFormGroup,
genHelpFormGroup

No

Notes:

1. Build plans are not transferred to the host. They define what needs to be sent
to the host. Specifically, the build plan includes the name of a build script that
runs on the build server. The build script also contains substitution variable
values that are used for substitution in the build script.
For additional details, refer to the EGL Generation Guide.

2. If you specify the cicsEntries="RDO" build descriptor option, the PROGRAM
entries are placed in alias.ppt. The TRANSACTION entries are placed in
alais.pct.

3. This object is produced only if the FormGroup contains print forms.
4. This object is produced for programs, FormGroups, and DataTables.
5. This object is produced only if the FormGroup contains text forms.

Objects Generated for Programs

Application COBOL Program
The generated program is a COBOL program that contains the following:
v Program control logic
v Logic for functions and I/O operations
v Data for both the program and program control

The program control logic performs the following functions for a program, as
needed:
v Initialization
v Cleanup at end of program
v Error reporting
v Segmentation support, including saving data before and restoring after a

converse statement
v Transfer of control

Sample Runtime JCL
The generator produces sample runtime JCL for running programs in the z/OS
batch and IMS BMP environments when the genRunFile build descriptor option is
set to YES during program generation. Each person using the JCL must provide a
JOB statement.

The JCL is produced from model JCL templates that you can modify to enforce
customer data set naming conventions. For more information about modifying the
sample templates, refer to the EGL Generation Guide.

The JCL might not be complete and should be reviewed and modified if necessary
before being used. For example, the JCL for the generated program does not
contain any DD statements for data sets used by other programs or that can be
started by a call or transfer statement. Comments in the JCL indicate where DD

Chapter 9. Output of Program Generation on z/OS Systems 77

statements for these programs need to be added. To build the final JCL needed to
run a set of programs as a run unit, you should edit the program JCL and include
the DD statements for invoked programs with the JCL for the first main program.
You might need to add DD statements for files that are specified during run time
with the resourceAssociation record-specific variable or with the
converseVar.printerAssociation system variable.

Bind Commands
Bind commands are required for an SQL program. The bind commands either
reside in a bind control part that has the same name as the program or, you can
specify the bind control part using the bind build descriptor option.

You are not required to supply a bind control part. If one is not supplied, EGL
generates a default bind control part that may or may not meet the requirements of
the program.

The bind control part generated by default cannot be affected by users. However,
bind control parts provided by the user may contain references to symbolic
parameters which get substituted at generation time.

Link Edit File
Link edit files are required for each program, DataTable program, print services
program, and FormGroup format module. For programs, EGL always generates a
default link edit file called alias.led. If you need the program to be link edited
differently (for example, to be statically linked with other programs), you can
create a program-specific link edit part that has the same name as the program, or
you can specify the name of the link edit part using the linkedit build descriptor
option. If you create a program-specific link edit part, EGL generates this part as a
file called alias.lkg.

The link edit part generated by default cannot be affected by users. However, link
edit parts provided by the user may contain references to symbolic parameters
which get substituted at generation time.

CICS Entries
If you set the cicsEntries build descriptor option to YES, the PPT or RDO DEFINE
PROGRAM entries are generated for you for the following:
v Each program, library, or service
v Each DataTable program
v The print services program and FormGroup format module for each FormGroup

If you set the cicsEntries build descriptor option to YES, the PCT or RDO DEFINE
TRANSACTION commands are generated for you for main programs using the
transaction names from both the startTransactionID and restartTransactionID
build descriptor options.

Objects Generated for DataTables

DataTable COBOL Program
The DataTable program is a COBOL program that contains the DataTable contents
defined in program working storage. This object is produced when you set the
genDataTables build descriptor option to YES. This allows DataTables to be
generated independently of programs when the contents of a DataTable need to be
changed.

78 IBM Rational COBOL Runtime Guide for zSeries

Objects Generated for FormGroups

Online Print Services Program
The online print services program is a COBOL program that performs print I/O,
output formatting, and SET operations for a generated online CICS program that
prints output. This object is produced when you set the genFormGroup or
genHelpFormGroup build descriptor options to YES during program generation.

Batch Print Services Program
The batch print services program is a COBOL program that formats data for line
printers and writes the data to either the printer output file (directly to the printer
or a QSAM file) or to a generalized sequential access method (GSAM) file. This
program is used with programs that run in the z/OS batch or IMS BMP
environments. This object is produced when you set the genFormGroup build
descriptor option to YES and also specify (or default to) the
formServicePgmType="ALL", formServicePgmType="SEQ", or
formServicePgmType="GSAM" build descriptor option.

FormGroup Format Module
The FormGroup format module is a generated structure that describes the layout
for text forms in the FormGroup. The generator builds the structure as a z/OS
object module for the CICS, IMS/VS, and IMS BMP environments. This object is
produced when you set the genFormGroup or genHelpFormGroup build
descriptor option to YES.

MFS Print Services Program
The MFS print service program is a COBOL program that performs print I/O,
output formatting, and SET operations for a generated IMS/VS or IMS BMP
program that prints output using MFS control blocks. This object is produced
when you generate for the IMS/VS environment and set the genFormGroup or
genHelpFormGroup build descriptor option to YES. It is also produced when you
generate for the IMS BMP environment, set the genFormGroup build descriptor
option to YES, and also specify (or default to) the formServicePgmType="ALL" or
formServicePgmType="MFS" build descriptor option.

MFS Source
In the IMS environment, an MFS source file is generated at the same time as the
FormGroup format module. The build server automatically compiles this MFS
source to generate IMS format, input, and output messages for each device type
defined.

COBOL Copybook for MFS MID/MOD Layout
The COBOL copybook provides the equivalent COBOL definition of the MFS MID
and MOD layouts for text forms. You can use the COBOL copybook if you need to
transfer to a non-EGL program using a show statement or transfer from a non-EGL
program to an EGL program that specifies the inputForm property. If the
FormGroup contains text forms, this object is produced when you generate for the
IMS/VS environment and set the genFormGroup or genHelpFormGroup build
descriptor option to YES. It is also produced when you generate for the IMS BMP
environment, specify the genFormGroup build descriptor option, and also specify
(or default to) the formServicePgmType="ALL" or formServicePgmType="MFS"
build descriptor option .

Chapter 9. Output of Program Generation on z/OS Systems 79

80 IBM Rational COBOL Runtime Guide for zSeries

Chapter 10. z/OS Builds

EGL generates the files needed to create an executable program. After creating
these files, the generation process communicates with the build server on z/OS to
transfer the files to the host and then initiate the appropriate builds (compiles,
link-edits, binds, and so on) for these programs.

To control the build process, the EGL generation process creates an XML file called
a build plan for each generated program. This build plan contains specific
information that the build server uses when building the generated program.

The type of information that the build plan contains includes:
v The name of the build script that the build server invokes to process the build
v The location on the client workstation where the server places listings and

diagnostics from the build tools (for example, the compiler or linkage editor)
v The generated program
v A list of dependent files for the build process (for example, the name of the link

edit file or the bind file) containing information used by the build process
v A list of environment variables that are used to override the default VARS

values specified in the Pseudo-JCL build script

The environment variables defined in the build plan are set using build descriptor
options and symbolic parameters specified by the user during program generation.

Using the information in the build plan, the server invokes the build script
overriding any predefined defaults in the pseudo-JCL build script with the
appropriate values specified in the build plan.

Following the steps outlined in the build script, the build server transforms one set
of files into another by invoking tools such as compilers and link editors. For
example, using a build script, the build server might transform a COBOL source
file into an object file. Another build script might perform the database bind.

After the build is finished, the build server places the listings and diagnostics from
the build process in the location specified in the build plan or build script.

Prepared output is placed into PDSs on the build server machine. The high level
and middle qualifiers of the PDS are controlled by the projectID and system build
descriptor options. The low level qualifiers are controlled by the type of output.

© Copyright IBM Corp. 1994, 2012 81

z/OS Build Server
On z/OS, you can configure the build server to perform z/OS or USS builds. If
you need both builds, then you need to start two build servers, each listening on a
unique TCP/IP port for each type.

The Remote Build server performs the following tasks:
v Receives build transactions and files.
v Performs character conversions.
v Runs builds within its environment.
v Optionally collects and returns results to the client.

In z/OS, the server load module CCUBLDS receives client build transactions.
CCUBLDS triggers the JCL member CCUMVS, which executes the CCUBLDW
module. CCUBLDW processes your build scripts.

USS

z/OS

Workstation client Build servers

Build results
(XML)

XML

iSeries

Build command
processor

Build
command

Build
command

Build
command

TCP/IP
socket

TCP/IP
socket

TCP/IP
socket

COBOL EGL Java

Build plan
(XML)

XML

Figure 10. z/OS Build Process

82 IBM Rational COBOL Runtime Guide for zSeries

For USS operations, the server load modules CCUMAIN and CCUBLDS run in
z/OS. CCUBLDS triggers the JCL member CCUUSS, which starts the USS shell
script ccubldw. The ccubldw script starts the executable ccubldw, which processes
build transactions.

Starting a z/OS Build Server
The z/OS build server, CCUBLDS, is an z/OS load module that you can run as a
batch program.

The CCUBLDS job initiates a new job for each build transaction. The sample JCL for
that new job is in member CCUMVS of the installation data set whose low-level
qualifier is SELASAMP. The server is multi-threaded, so these jobs run
concurrently and are independent of each other. The number of concurrent jobs
running at any one time is limited by system resources (such as initiators).

The build server receives commands and files, performs character conversions, sets
up the environment, runs builds within this environment, collects the results and
returns the results.

See the program directory for Rational COBOL Runtime for zSeries for additional
information on customizing the following sample JCL members in the dataset
whose low level qualifier is SELASAMP:

CCUMVS
Submitted in every build.

CCURUNM
Submitted to run the build server (CCUMAIN program).

//CCUBLDS JOB (ACCT#),’TEST’,REGION=0M,
// CLASS=O,MSGCLASS=T
//*--
//* PROGRAM: CCUMAIN
//* JCL to start CCU z/OS Build Server
//*
//* COPYRIGHT: Copyright (C) International Business
//* Corp. 2001
//*
//* DISCLAIMER OF WARRANTIES:
//* The following enclosed code is sample code created
//* by IBM Corporation. This sample code is not part
//* any standard product and is provided to you solely
//* for the purpose of assisting you in the development
//* of your applications. The code is provide "AS IS",
//* without warranty of any kind. IBM shall not be
//* liable for any damages arising out of your use
//* of the sample code
//*--
//* Some dataset names may need to be modified
//* according to your system’s customization
//*--
//RUNPGM EXEC PGM=CCUMAIN,DYNAMNBR=30,REGION=7400K,TIME=NOLIMIT,
// PARM=’-p 4112 -a 2 -n 3 -q 20 -T 20’
//STEPLIB DD DSN=CUST.UCCBLD.LOAD,DISP=SHR
//CCUWJCL DD DISP=SHR,DSN=install-prefix.SELASAMP(CCUMVS)
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//CCUBLOG DD SYSOUT=*
//

Figure 11. An example of the JCL needed to start the build server for z/OS

Chapter 10. z/OS Builds 83

You start a build server by using z/OS JCL commands. The syntax for the
parameters line is as follows:
Syntax: // PARM= ’−p <portno> [−V ...] [−a {2|1|0} [−n <n>] [−q <q>] [−t] [-T <n>]’

where:

−p Specifies the port number (portno) to which the server listens to
communicate with the clients.

−V Specifies the verbosity level of the server. You may specify this parameter up
to three times (maximum verbosity).

For example, to increase the verbosity to the maximum, you specify -V -V
-V.

−a Specifies the authentication mode of the CCUBLDS server. The server state is
either 'A' (APF authorized) or 'U' (not APF authorized).
2 Server state: A. The user submitting the build transaction must specify a

valid user ID and password when the user initiates a build by using the
remote build client. The server performs the build transaction under the
access and authority of this user ID. Mode 2 is the default.

1 Server state: A. The user submitting the build transaction can provide a
valid user ID and password. The server performs the build transaction
under the access and authority of this user. If the user does not provide a
user ID and password, the build transaction is performed under the
access and authority of the user ID assigned to the build server job.

0 Server state: A or U. If U, APF-authorized build programs will fail. If the
user submitting the build transaction specifies a TSO user ID and
password, the server ignores them and the build transaction is performed
under the access and authority of the user ID assigned to the build server
job.

If you start the server on z/OS from an APF-authorized library (this is
required in modes 1 and 2 but is optional in mode 0), the server state is
authorized ('A') and the build script can specify an APF authorized program
as the executable.

Notes:

1. For additional information about installing code in an APF-authorized
library to allow users to run builds under the authority of their userid,
see the program directory for Rational COBOL Runtime.

2. In this case, the build script can also specify non-APF authorized
programs. However, in a multistep JCL script, an authorized program
cannot be executed after an unauthorized program.

3. If the server is not started from an APF-authorized library, the server state
is not authorized ('U') and the build script can specify only non-APF
authorized programs as executables.

−n Specifies the number of concurrent builds. The default is 1. Set n equal to the
number of concurrent builds you want to allow. Once there are n number of
concurrent builds running, the build server queues any additional requests
and submits them on a first come first served basis as builds are completed.

−q Specifies the size of the queue (q) for clients. The default is 10. Each queued
client uses a TCP/IP socket. Therefore setting this too high may require more
sockets than are available, causing unpredictable results. If the queue is full,
subsequent clients are rejected by the server. However, the build client
automatically retries the build in that case.

84 IBM Rational COBOL Runtime Guide for zSeries

−t Starts tracing of this server job and writes output to STDOUT. This parameter
is normally used only for debugging.

−T Specifies the number of minutes the build server will wait for a started child
process (CCUBLDW) to complete. If the system is overloaded, increase this
value. The default is 5.

Note: See the program directory for Rational COBOL Runtime for zSeries for
information about modifying the JCL necessary to start the USS and z/OS
build servers

Starting a USS Build Server
You start the USS build server the same way you start the z/OS build server,
except with a different dataset allocated by DD name CCUWJCL. This difference is
reflected in the CCURUN and CCURUNU JCL customized at installation. The
sample JCL CCURUNU needs to be modified just as CCURUN.

The CCUWJCL DD name uses the JCL member CCUUSS. As found in the
installation data set whose low-level qualifier is SELASAMP, that member acts as a
template in submitting build transactions to USS using the BPXBATCH utility to
submit the USS shell script ccubldw.sh.

The build server creates temporary datasets and directories in the directory where
the program is initiated. It is important that the ID that starts the server has the
appropriate authority to create these datasets and directories otherwise the server
will not initiate properly and all transactions will fail.

Alternatively, you can avoid using the build server and use your already compiled
Java code from the EGL workbench. You can move the code to USS or WAS by
exporting the resulting .ear, .jar, or .war file and sending that file to USS or WAS.

Stopping servers
To stop an z/OS server, cancel the job that was used to start it.

Configuring a build server
To configure a build server, you must modify members of the installation data set
whose low-level qualifier is SELASAMP. Those members contain JCL and are
named as follows:
v CCUMVS (for z/OS builds)
v CCUUSS (for USS builds)

Note: See the program directory for Rational COBOL Runtime for zSeries for
information about configuring the USS and z/OS build servers.

Working with Build Scripts
There is a fundamental difference between build scripts on z/OS and build scripts
on USS. Build scripts on z/OS must be text files and must be written in
Pseudo-JCL. On USS, you can use any executable file as a build script and the file
can be either text or binary.

Working with z/OS Build Scripts
The build script processed by the z/OS server is always a text file written in
Pseudo-JCL. It is specified in one of two ways. If the build script is not specified as

Chapter 10. z/OS Builds 85

part of the build command, then the server looks for it as a member of the PDS
specified by the ddname CCUPROC for the server job. This PDS must be of
RECFM=FB, LRECL=80.

The build script is parsed by the server. From the parsed results, the server
allocates the specified DD names and data sets; it then executes the programs
dynamically.

On z/OS, the server also uses the JCL to determine where to store the files
involved in an z/OS build.

EGL uses and Rational COBOL Runtime provides build scripts in the PDS
specified by DD name CCUPROC in the CCUMVS JCL. These build scripts are the
defaults specified in the EGL generated build plans. The member names are
FDABCL, FDABIND, FDABPTCL, FDABTCL, FDACL, FDALINK, FDAMFS,
FDAPCL, FDAPTCL, and FDATCL.

These must be members in the PDS specified in the CCUPROC DD card in the JCL
used to invoke a build transaction (see the previous section). The members provide
the following functions:

FDABCL
Compile and link the generated z/OS batch, IMS/VS, and IMS BMP
programs.

FDABIND
Bind generated programs that contain DB2 statements.

FDABPTCL
DB2 precompile, then translate for CICS, compile, and link the generated
z/OS batch programs making CICS EXCI calls.

FDABTCL
Translate for CICS, compile, and link the generated z/OS batch programs
making CICS EXCI calls.

FDACL
Compile and link the generated COBOL source for print services programs
or DataTable programs that do not contain CICS or DB2 commands.

FDALINK
Link the generated FormGroup format module.

FDAMFS
Invoke the MFS utilities to prepare MFS source for execution in IMS/VS or
IMS BMP environments.

FDAPCL
DB2 precompile, compile, and link the generated z/OS batch, IMS/VS, or
IMS BMP programs that contain DB2 statements.

FDAPTCL
DB2 precompile, CICS translation, compile, and link the generated CICS
COBOL programs that contain DB2 statements.

FDATCL
CICS translation, compile, and link the generated CICS COBOL programs
that do not contain DB2 statements.

86 IBM Rational COBOL Runtime Guide for zSeries

To override the default build scripts, use the symbolic parameter
DISTBUILD_BUILD_SCRIPT. To identify the PDS from which to access build
scripts at build time, specify the PDS name in the symbolic parameter
BUILD_SCRIPT_LIBRARY.

Refer to the EGL Generation Guide in the EGL help system for more information on
how to use symbolic parameters during generation.

Writing a JCL build script
JCL build scripts must be written using Pseudo-JCL. The best starting point for a
JCL build script is an existing JCL fragment that is used for transforming inputs
into output. For example, suppose you want to create a build script that compiles a
COBOL source file into an OBJECT file using a z/OS compiler. You probably
already have JCL that can be submitted as a batch job that does this.

When you create a build script for the z/OS environment, you specify Pseudo-JCL
statements. See "Modifying EGL build scripts for z/OS" and "Pseudo-JCL syntax"
in the EGL Generation Guide.

For more information about JCL syntax, refer to the JCL User's Guide and JCL
Reference for your version of z/OS.

File Name Conversions for z/OS
Workstation file names are converted to z/OS host PDS names and member names
by the z/OS build server according to the following rules:
v The directory path of a file name is not used. The end of a directory path of a

file name is specified by a slash or left parenthesis ("/", "(", or "\"). All characters
of a file name up to and including the rightmost slash or left parenthesis are
discarded.

v Lowercase characters are converted to uppercase characters.
v The file extension is stripped, including the separating period. The extension,

minus the period, is used by the z/OS server to direct the file to particular data
sets according to user-specified syntax in the JCL build scripts.

v The remaining name is truncated to a maximum of 8 characters.
v Names must contain characters that are valid in z/OS. z/OS allows the

following characters:
0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ$@#

The name must begin with an alphabetic character.
v Underscore characters (_) in a file name are converted to at signs (@).

The following are examples of how a workstation name is converted:
v A file name of src\build\fhbldobj.CBL is converted to FHBLDOBJ on z/OS.
v A file name of src/build/fhbtruncate.cbl is converted to FHBTRUNC on z/OS.

In both of these examples, the .CBL or .cbl is removed. The z/OS server uses the
resulting extension to resolve and possibly allocate the z/OS data sets needed for
the build process. The extensions are required for files that participate in an z/OS
build.

Converting JCL to Pseudo-JCL
The following is a JCL procedure for a z/OS compile and link:

Chapter 10. z/OS Builds 87

//**
//* JCL Procedure - COBOL COMPILE AND LINK-EDIT
//**
//*
//ELACL PROC CGHLQ=’USER’,
// COBCOMP=’SYS1.IGY.SIGYCOMP’,
// COBLIB=’SYS1.SCEELKED’,
// ELA=’ELA.V6R0M1’,
// DATA=’31’,
// ENV=’ZOSCICS’,
// MBR=PGMA,
// RESLIB=’SYS1.RESLIB’,
// RGN=1024K,
// SOUT=’*’,
// WSPC=500 ,
//*
//* PARAMETERS:
//* CGHLQ = COBOL GENERATION USER DATA SET HIGH LEVEL QUALIFIER
//* COBCOMP = COBOL COMPILER LIBRARY
//* COBLIB = LE RUN TIME LIBRARY
//* ELA = EGL SERVER HIGH LEVEL QUALIFIER
//* DATA = COMPILE OPTION FOR PLACING WORKING STORAGE
//* ABOVE 16M LINE
//* ENV = COBOL GENERATION USER DATA SET ENVIRONMENT QUALIFIER
//* (SHOULD BE EQUAL TO GENERATION TARGET ENVIRONMENT)
//* MBR = SOURCE NAME
//* RESLIB = IMS RESLIB LIBRARY
//* RGN = REGION SIZE
//* SOUT = SYSOUT ASSIGNMENT
//* WSPC = PRIMARY AND SECONDARY SPACE ALLOCATION
//*
//**
//* COMPILE THE COBOL PROGRAM
//**
//*
//C EXEC PGM=IGYCRCTL,REGION=&RGN,
// PARM=(NOSEQ,QUOTE,OFFSET,LIB,RENT,NODYNAM,DBCS,OPT,
// ’TRUNC(BIN)’,’NUMPROC(NOPFD)’,NOCMPR2,’DATA(&DATA)’)
//STEPLIB DD DISP=SHR,DSN=&COBCOMP
//SYSIN DD DISP=SHR,DSN=&CGHLQ..&ENV..EZESRC(&MBR)
//SYSLIB DD DISP=SHR,DSN=&ELA..SELACOPY
//SYSLIN DD DISP=(MOD,PASS),DSN=&&LOADSET,UNIT=VIO,
// SPACE=(800,(&WSPC,&WSPC))
//SYSPRINT DD SYSOUT=&SOUT,DCB=BLKSIZE=13300
//SYSUDUMP DD SYSOUT=&SOUT,DCB=BLKSIZE=13300
//SYSUT1 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=VIO
//SYSUT2 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=VIO
//SYSUT3 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=VIO
//SYSUT4 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=VIO
//SYSUT5 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=VIO
//SYSUT6 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=VIO
//SYSUT7 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=VIO
//*
//**
//* LINK-EDIT THE COBOL PROGRAM
//* IF THE RETURN CODE ON ALL PREVIOUS STEPS IS 4 OR LESS
//**
//*
//L EXEC PGM=IEWL,COND=(5,LT,C),REGION=&RGN,
// PARM=’RENT,REUS,LIST,XREF,MAP,AMODE(31),RMODE(ANY)’
//SYSLIB DD DISP=SHR,DSN=&COBLIB
// DD DISP=SHR,DSN=&RESLIB
//SELALMD DD DISP=SHR,DSN=&ELA..SELALMD
//SYSLIN DD DISP=(OLD,DELETE),DSN=&&LOADSET
// DD DDNAME=SYSIN
//SYSLMOD DD DISP=SHR,DSN=&CGHLQ..&ENV..LOAD(&MBR)

88 IBM Rational COBOL Runtime Guide for zSeries

//SYSPRINT DD SYSOUT=&SOUT,DCB=BLKSIZE=13300
//SYSUDUMP DD SYSOUT=&SOUT,DCB=BLKSIZE=13300
//SYSUT1 DD SPACE=(1024,(&WSPC,&WSPC)),UNIT=VIO

The first step in converting the JCL fragment is to recognize the intent for each of
the data sets and DD names. For this COBOL compiler example, the SYSIN DD
name needs to be associated with the source file, the SYSLIN DD name needs to be
associated with the object file, and so on.

In each of these cases, the build script must tell the server where to pick up the
input files before the execution of the specified program (PGM=IGYCRCTL) and
where to put the output files after the execution of the specified program.

Assume that your source files have the extension .cbl. You allocate a data set to the
SYSIN DD name to contain a source file with a .cbl extension. You specify the
DCB, UNIT, DISP, and SPACE attributes to dynamically create this data set every
time this build script is invoked. You add CCUEXT=CBL to indicate that the file
content comes from an input file with an extension of .cbl.

For the SYSPRINT DD statement, use the CCUEXT parameter to tell the z/OS
build server what you want to have done with the COBOL compiler listing. In the
example, CCUEXT=&CCUEXTC so that the value is set from the default
Pseudo-JCL build script parameter CCUEXTC. The value CCUOUT indicates that
you want the listing returned to the client as a file with a name based on the DD
name.

The following JCL build script is the result of converting the JCL procedure.
//**
//* BUILD SCRIPT - COBOL COMPILE AND LINK-EDIT
//**
//*
//DEFAULTS VARS CGHLQ=USER,
// COBCOMP=SYS1.IGY.V3R1M0.SIGYCOMP,
// COBLIB=SYS1.SCEELKED,
// COBLISTPARMS=OFFSET&COMMA.NOLIST&COMMA.MAP,
// ELA=ELA.V6R0M1;,
// DATA=31,
// SYSTEM=ZOSCICS,
// MBR=PGMA,
// RGN=4096K
// CCUEXTC=CCUOUT,
// CCUEXTL=CCUOUT,
// SOUT=*,
// DBCS=&COMMA.DBCS
// WSPC=2500
//*
//* PARAMETERS:
//* CGHLQ = COBOL GENERATION USER DATA SET HIGH LEVEL QUALIFIER
//* COBCOMP = COBOL COMPILER LIBRARY
//* COBLIB = LE RUN TIME LIBRARY
//* COBLISTPARMS = LISTING OPTIONS FOR COBOL COMPILER
//* ELA = RATIONAL COBOL RUNTIME HIGH LEVEL QUALIFIER
//* DATA = COMPILE OPTION FOR PLACING WORKING STORAGE
//* ABOVE 16M LINE
//* DBCS = COMPILE OPTION FOR INDICATING SOURCE CONTAINS DBCS
//* CHARACTERS
//* SYSTEM = SYSTEM GENERATING FOR. USED AS USER DATASET MIDDLE
//* QUALIFIER
//* MBR = SOURCE NAME
//* RGN = REGION SIZE
//* CCUEXTC = CCUEXT VALUE FOR COMPILE PRINTOUTS RETURNED TO
//* CLIENT.

Chapter 10. z/OS Builds 89

//* CCUOUT=RETURN TO CLIENT AS FILE NAMED BY DDNAME
//* CCUSTD=RETURN TO CLIENT AS STANDARD OUT
//* CCUERR=RETURN TO CLIENT AS STANDARD ERROR
//* CCUEXTL = CCUEXT VALUE FOR LINK PRINTOUTS RETURNED TO CLIENT
//* CCUOUT=RETURN TO CLIENT AS FILE NAMED BY DDNAME
//* CCUSTD=RETURN TO CLIENT AS STANDARD OUT
//* CCUERR=RETURN TO CLIENT AS STANDARD ERROR
//* SOUT = SYSOUT ASSIGNMENT IF A SYSOUT FILE NOT RETURNED
//* TO CLIENT
//* WSPC = PRIMARY AND SECONDARY SPACE ALLOCATION
//*
//**
//* COMPILE THE COBOL PROGRAM
//**
//*
//C EXEC PGM=IGYCRCTL,REGION=&RGN,
// PARM=’NOSEQ,QUOTE,LIB,RENT,NODYNAM,OPT&DBCS,
// TRUNC(BIN),NUMPROC(NOPFD),&COBLISTPARMS.,DATA(&DATA)’
//STEPLIB DD DISP=SHR,DSN=&COBCOMP
//* COBOL SOURCE CODE UPLOADED FROM CLIENT (&MBR.CBL)
//SYSIN DD CCUEXT=CBL,DISP=(NEW,DELETE),
// UNIT=SYSDA,SPACE=(TRK,(10,10)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSLIB DD DISP=SHR,DSN=&ELA..SELACOPY
//SYSLIN DD DISP=SHR,DSN=&CGHLQ..&SYSTEM..OBJECT(&MBR),ENQ=YES
//* RETURN COMPILER LISTING TO CLIENT AS FILE &PREFIX.C.SYSPRINT
//SYSPRINT DD CCUEXT=&CCUEXTC,DISP=(NEW,DELETE),
// UNIT=VIO,SPACE=(CYL,(5,5)),
// DCB=(RECFM=FB,LRECL=121,BLKSIZE=1210)
//SYSUT1 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=VIO
//SYSUT2 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=VIO
//SYSUT3 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=VIO
//SYSUT4 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=VIO
//SYSUT5 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=VIO
//SYSUT6 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=VIO
//SYSUT7 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=VIO
//*
//**
//* LINK-EDIT THE COBOL PROGRAM
//* IF THE RETURN CODE ON ALL PREVIOUS STEPS IS 4 OR LESS
//**
//*
//L EXEC PGM=IEWL,COND=(5,LT,C),REGION=&RGN,
// PARM=’RENT,REUS,LIST,XREF,MAP,AMODE(&DATA),RMODE(ANY)’
//SYSLIB DD DISP=SHR,DSN=&COBLIB
//SELALMD DD DISP=SHR,DSN=&ELA..SELALMD
//OBJLIB DD DISP=SHR,DSN=&CGHLQ..&SYSTEM..OBJECT
//* LINK EDIT CONTROL FILE UPLOADED FROM CLIENT (&MBR.LED)
//SYSLIN DD CCUEXT=LED,DISP=(NEW,DELETE),
// UNIT=SYSDA,SPACE=(TRK,(10,10)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSLMOD DD DISP=SHR,DSN=&CGHLQ..&SYSTEM..LOAD(&MBR),ENQ=YES
//* RETURN LINK EDIT LISTING TO CLIENT AS FILE &PREFIX.L.SYSPRINT
//SYSPRINT DD CCUEXT=&CCUEXTL,DISP=(NEW,DELETE),
// UNIT=VIO,SPACE=(TRK,(30,10)),
// DCB=(RECFM=FB,LRECL=121,BLKSIZE=1210)
//SYSUT1 DD SPACE=(1024,(&WSPC,&WSPC)),UNIT=VIO
//

90 IBM Rational COBOL Runtime Guide for zSeries

Chapter 11. Preparing and Running a Generated Program in
CICS

This chapter describes the unique steps required to prepare and run a generated
COBOL program in an CICS environment:
v Modifying CICS resource definitions
v Modifying CICS startup JCL
v Making new modules available
v Making programs resident
v Running programs

Modifying CICS Resource Definitions
The CICS environment uses resource definitions to identify startup parameters,
transactions, programs, files, databases, transient data destinations, and system
locations for proper operation. You must add to or modify these resource
definitions to correctly identify all objects to be used in the new or changed
program. When using CICS tables, the tables are compiled as assembler programs
and stored in a runtime library. Some tables can also be maintained through an
online facility as described in the resource definition online manual for your
version of CICS. CICS requires that the online facility be used for PROGRAM and
TRANSACTION entries.

Refer to the CICS resource definitions guide for additional information on
providing definitions.

You can either write your own RDO PROGRAM and TRANSACTION entries or
use the ones generated by EGL. However, you must create other resource
definitions needed by your program, such as those required for transient data
queues, files, or DB2.

Program Entries
The EGL COBOL generation process creates programs that must be defined, as a
resource definition online (RDO) PROGRAM entry or by using dynamic program
entries.

An entry is required for each EGL generated program. You can request that sample
PPT or RDO entries be generated for you by specifying the cicsEntries build
descriptor option at generation. However, the PPT entries are no longer supported
by CICS.

Either the batch program DFHCSDUP utility or the resource definition online
(RDO) CEDA DEFINE PROGRAM command can be used to define the programs
to CICS.

If you specify cicsEntries="RDO", CICS RDO DEFINE PROGRAM commands are
generated for you for each program that requires an RDO PROGRAM entry. The
build plan created during generation uploads the RDO command files to the z/OS
library specified at generation.

The following example shows how to define the PROGRAM entries using the RDO
CEDA transaction DEFINE PROGRAM command.

© Copyright IBM Corp. 1994, 2012 91

CEDA DEF PROG(progname) L(LE370) REL(NO) RES(NO) S(ENABLED) GROUP(xxxx)

The values shown for REL, RES, and S keywords are the default values and can be
omitted from the command. RES(YES) might provide better performance for
frequently used programs.

Transaction Entries
A CICS TRANSACTION entry contains the control information used by CICS for
identifying and initializing a transaction. This entry is required by CICS to verify
incoming requests to start transactions, and to supply information about the
transaction such as the transaction priority, the security key, and the length of the
transaction work area (TWA).

A CICS RDO TRANSACTION entry is required for each transaction code used to
start an EGL generated program. If you specify cicsEntries="RDO", CICS RDO
DEFINE TRANSACTION commands are generated for you for main programs
using the transaction names from both the startTransactionID and the
restartTransactionID build descriptor options. The following example shows how
to define the TRANSACTION entries using the RDO CEDA transaction DEFINE
TRANSACTION:
CEDA DEF TR(tran) PROG(progname) ACTION(BACKOUT) DU(NO) RES(NO) TW(1024)

EGL generated programs can be started by a remote procedure call from some
remote systems. The CICS supported mirror program DFHMIRS, normally invoked
by the CPMI transaction is used during this remote procedure call. It:
1. Determines which server program should be given control
2. Builds the COMMAREA
3. Links to the defined server program via CICS LINK

CPMI is the CICS supplied default transaction code to invoke the CICS mirror
program DFHMIRS. When using CPMI to start EGL programs, you must change
the transaction definition for CPMI to specify a TWASIZE of at least 1024 bytes.

To avoid making changes to the CPMI definition in the CICS supplied group, it is
recommended that you copy the CICS supplied CPMI definitions to a new group
or create a unique transaction ID with the same characteristics as CPMI. The new
transaction or copy of CPMI should be changed and verified to ensure the
following values are set.
1. The twasize is 1024
2. The profile is DFHCICSA (CICS default would be DFHCICST (T for terminal))
3. The program invoked is DFHMIRS

Example:
DEFINE TRANSACTION(MYMI) PROGRAM(DFHMIRS) TWASIZE(1024) PROFILE(DFHCICSA)

Destination Control Table Entries
A CICS TDQUEUE entry is required for each program file that is assigned to a
transient data queue. A TDQUEUE entry is also required for destinations specified
as error destination queue names using the Rational COBOL Runtime diagnostic
controller utility. The parameters for TDQUEUE entries depend on your
destination type. There are intrapartition, extrapartition, indirect, and remote
destinations. See “Using and Allocating Data Files in CICS” on page 41 for
information about defining and managing program data files and “Defining

92 IBM Rational COBOL Runtime Guide for zSeries

Transient Data Queues” on page 43 for information about defining the DCT entry
for the error destination queue. Refer to appropriate CICS manuals for more
information on TDQUEUE entries.

File Control Table Entries
A CICS FILE entry is required for each program file that is specified as file type
VSAM. You must identify all FILE entries that might be referenced at run time. See
“Using and Allocating Data Files in CICS” on page 41 for more information on
defining and managing program data files in the CICS environment.

DB2 Entries
If the program running under a transaction accesses a DB2 database, then you
must define a CICS DB2CONN entry to define the DB2 connection. You must also
define a CICS DB2ENTRY entry to define the relationship of the transaction to the
DB2 plan. If there is more than one transaction that uses the DB2 plan, you must
define CICS DB2TRAN entries to define the relationship of the additional
transactions to the DB2ENTRY. The information that you specify is the same as
you specify for any CICS transaction, regardless of whether it is written in EGL or
another language.

The following example shows the types information that you must specify:
CEDA DEF DB2CONN(connectionName) DB2ID(db2Subsystem)
CEDA DEF DB2ENTRY(entryDefName) TRANSID(tran) PLAN(planName)
CEDA DEF DB2TRAN(tranDefName) TRANSID(tran) ENTRY(entryDefName)

For more information on how to specify the parameters shown in the example,
alternative ways of providing the equivalent information, and other parameters
you can specify when you define these DB2 entries, see the CICS resource
definition guide for your release of CICS.

Using Remote Programs, Transactions, or Files
Refer to the appropriate CICS manuals for information about defining remote
programs, transactions, or files.

CICS Setup for Calling CICS Programs from z/OS Batch
You must set up the CICS region to receive EXCI calls. In particular, you must
meet the following CICS requirements:
v Include IRCSTRT=YES in the CICS region.
v Install the CICS default group DFH$EXCI or equivalent, as in the following

example:
CEDA IN GR(DFH$EXCI) 5

CICS Setup for Calling z/OS Batch Programs in CICS
This section describes the setup that is necessary in the following case: an EGL
program that runs under CICS calls an EGL program that was generated for z/OS
batch but also runs under CICS.

To ensure that the call works, do as follows:
1. Include the EGL runtime dataset in the STEPLIB of the CICS region. The last

qualifier of that dataset is SELALMD.

Chapter 11. Preparing and Running a Generated Program in CICS 93

2. If the STGPROT setting in the region is STGPROT=YES, ensure that the
following actions are done:
v The transaction is defined to run in TASKDATAKey=CICS.
v The program associated with the transaction is defined to run with

EXECKEY=CICS.
v Any subsequent called program that is invoked with a CICS LINK is defined

to run with EXECKEY=CICS.
3. If the called, generated program accesses DB2, two copies of the load module

are needed, each linked with a different DB2 interface module. Do as follows:
a. Link a copy of the program with the DB2 batch interface module (DSNALI)

and place the load module in the STEPLIB of the batch job.
b. Link a second copy of the program with the CICS DB2 interface module

(DSNCLI) and place the load module in the DFHRPL of the CICS region.
If necessary, you can set up the EGL ZOSBATCH build scripts to run a relink
step into the CICS load library.

Modifying CICS Startup JCL
You must include the load library where your generated programs reside in the
DFHRPL DD concatenation. Your system administrator included the LE runtime
libraries and the Rational COBOL Runtime load library in the DFHRPL DD
concatenation when the Rational COBOL Runtime product was installed.

The CICS startup JCL might need to be modified to add or change allocations for
files used by EGL-generated programs. These include VSAM files and
extrapartition transient data destinations.

For VSAM data sets, it is not necessary to include allocations in the startup JCL if
you specify the data set name and disposition in the CICS FILE entry for the file.
CICS dynamically allocates the file at open time.

Making New Modules Available in the CICS Environment
After you generate a new version of a program, FormGroup, or DataTable you
need to make the modules available to CICS.

For programs and FormGroups, you can use the CICS NEWCOPY command or the
Rational COBOL Runtime new copy utility to cause the new copy of the program
to be used the next time a load request is issued for the program. If you use the
CICS NEWCOPY command for a FormGroup, you must issue the NEWCOPY for
both the online print services program and the FormGroup format module.

For DataTables, you must use the Rational COBOL Runtime new copy utility to
cause a fresh copy of the DataTable to be used the next time a load request is
issued for the table. Do not use the CICS NEWCOPY command for DataTables.
The Rational COBOL Runtime new copy utility sets a flag indicating that the new
copy of the DataTable is to be used the next time a program loads the DataTable
contents.

For more information on the Rational COBOL Runtime new copy utility, see “New
Copy” on page 122.

94 IBM Rational COBOL Runtime Guide for zSeries

Making Programs Resident
You can make frequently used programs or programs with high performance
requirements resident to avoid the overhead of loading the programs when they
are used. To aid in deciding which programs should be made resident, you can use
CICS shutdown statistics to determine how often a generated program is loaded in
a CICS region.

To make a program or FormGroup resident, specify the program as resident in the
RDO entry for the program. To make a DataTable program resident, set the
resident property to YES when you define the DataTable in EGL.

Running Programs under CICS
Either a main Text UI program or a main basic program generated for the z/OS
CICS environment can be started with CICS facilities. Called programs can be
started by another EGL program, by a non-EGL program, or through the remote
CICS services.

Prior to running a generated program, the program user might be required to sign
on to the CICS environment. Refer to CICS documentation for information about
signing on.

Starting the Transaction in CICS
Any main program that is generated with a target environment of z/OS CICS can
be started by entering the transaction code associated with the main program from
a clear screen in CICS. Any main program that is started in any of the following
ways must have a unique transaction code assigned to it:
v Directly in CICS
v By a transfer to transaction statement from another program
v By a show statement from another program
v By a vgLib.startTransaction() system function

The transaction code must be defined with an RDO TRANSACTION entry and be
associated with the first program in the run unit.

Controlling Diagnostic Information in the CICS Environment
Rational COBOL Runtime provides a diagnostic controller utility for the CICS
environment. This utility allows you to control the type of dump, the name of the
error destination queue and journal number for error messages, and whether the
transaction is disabled when a run unit error occurs. See “Diagnostic Control
Options for z/OS CICS Systems” on page 125 for more information about the
diagnostic controller utility.

Printing Diagnostic Messages in the CICS Environment
Rational COBOL Runtime provides a way to print diagnostic messages written to a
transient data queue. See “Diagnostic Message Printing Utility” on page 124 for
more information.

Chapter 11. Preparing and Running a Generated Program in CICS 95

96 IBM Rational COBOL Runtime Guide for zSeries

Chapter 12. Creating or Modifying Runtime JCL on z/OS
Systems

This chapter contains the information you need to modify the sample runtime JCL
created during program generation. You might need to modify the sample runtime
JCL for the following reasons:
v EGL does not include DD statements in the JCL to allocate data sets accessed by

programs called by or transferred to from the generated program.
v The generator does not include DD statements to allocate data sets accessed

when the EGL program moves a value to the record-specific variable
resourceAssociation or to the system variable converseVar.printerAssociation.

v The generator does not create any recovery or restart JCL.
v The sample JCL is based on the initial program in the run unit.

You need to ensure that the load libraries containing the initial program and any
dynamically invoked programs are included in the STEPLIB concatenation unless
you are using methods to put the load modules in memory. This includes program
modules that are called dynamically or that receive control by a transfer and
includes print services programs, FormGroup format modules, and DataTable
programs.

Tailoring JCL before Generation
EGL creates sample runtime JCL for basic programs being generated for the z/OS
batch or IMS BMP environments. The sample runtime JCL is based on templates
that are installed in the following location:

sharedInstallationDirectory/plugins/com.ibm.etools.egl.generators.cobol_version/MVStemplates

sharedInstallationDirectory
The path to the directory where you installed Rational® COBOL Runtime for
zSeries®.

version
The product version, for example, 6.0.0.

You can specify the location of site-specific templates by setting the templateDir
build descriptor option.

Some of the reasons to tailor the JCL templates are as follows:
v Implementing your installation’s data set naming conventions
v Adding DD statements to the STEPLIB concatenation
v Specifying a different DB2 subsystem

The sample JCL is shown in Chapter 13, “Preparing and Running Generated
Programs in z/OS Batch,” on page 101 and in Chapter 14, “Preparing and Running
Generated Programs in IMS/VS and IMS BMP,” on page 107.

The following table shows the relationship between the JCL templates used, the
target environments, and the types of databases being used by the program.

© Copyright IBM Corp. 1994, 2012 97

Table 18. Runtime JCL Templates Based on Environment and Databases

JCL Template Database Calls CICS EXCI? Environment

fda2mebe None No z/OS batch

fda2mebx None Yes z/OS batch

fda2mebd DB2 No z/OS batch

fda2mesx DB2 Yes z/OS batch

fda2mebb DB2 and DL/I n/a z/OS batch

fda2mebc DL/I n/a z/OS batch

fda2meia DB2 n/a IMS BMP

fda2meib Without DB2 n/a IMS BMP

fda2meba Any, for called
program

n/a z/OS batch or IMS
BMP

Table 19 shows the JCL templates that serve as models for DD statement
generation for program-dependent files and databases.

Table 19. Model DD Statement for Program-Dependent Files and Databases

JCL Template Contents

fda2msdi QSAM input file

fda2msdo QSAM output file

fda2mvsi VSAM input file

fda2mvso VSAM output file

fda2mgsi GSAM input file

fda2mgso GSAM output file

fda2mims GSAM IMS dataset for IMS BMP

fda2mcal Comment indicating where to insert DD statements for known
transferred-to and called programs

fda2meza Comment indicating where to insert DD statements for programs
transferred-to using the system variable sysVar.transferName

fda2mezd Comment indicating where to insert DD statements for data sets
using the record-specific variable resourceAssociation or the system
variable converseVar.printerAssociation

fda2mdli Comment indicating where to insert DD statements for DL/I
databases on z/OS batch

Modifying Runtime JCL
The sample runtime JCL for main basic programs contains EXEC statements to run
a program or a cataloged procedure. The JCL for main basic programs does not
include a JOB statement or the DD statements for data sets accessed by called or
transferred-to programs. Before you use the JCL to run the program, you must do
the following:
v Add a JOB statement.
v Insert missing DD statements as required. Comments in the generated JCL

indicate where to insert the DD statements.

98 IBM Rational COBOL Runtime Guide for zSeries

The sample runtime JCL for a called program contains only the DD statements that
are required for the called program.

After generation, add the DD statements for any files required by called or
transferred-to programs (including those named with sysVar.transferName) to the
sample JCL for the main program. In addition, you must add DD statements for
any files accessed by moving a value to the record-specific variable
resourceAssociation or to the system variable converseVar.printerAssociation. You
do not need to add DD statements for files that you access dynamically. You can
also customize the sample runtime JCL with respect to specific data set name
assignments, DCB information, output file space allocations, additional steps, and
other relevant data.

The type of runtime JCL generated for a main basic program varies based on the
types of databases used by the main program and whether the program uses CICS
EXCI to call a program running in a CICS region, as shown in Table 18 on page 98.
The generated runtime JCL does not consider the types of databases accessed by
called or transferred-to programs, or whether the called or transferred-to program
calls a program running in a CICS region. For example, if the main program does
not use relational databases, but it calls or transfers to programs that use relational
databases, you must modify the runtime JCL for the main program.

Consider the following situation:
v Program A is a main basic program that does not use relational databases.
v Program B is main basic program that accesses relational databases.
v Programs A and B are generated for the z/OS batch environment.
v Program A transfers to program B

Because program A does not use DB2, the JCL generated for program A is for a
main basic program without DB2 access (as shown in Figure 12 on page 102). This
JCL will not run correctly because program B requires DB2 to run. However, the
JCL generated for program B is for an z/OS batch job with DB2 access (as shown
in Figure 13 on page 103). The runtime JCL for program B can serve as a starting
point for creating the JCL required to run program A. The following changes are
required to the runtime JCL for program B:
v Change RUN PROG(APPLB) to RUN PROG(APPLA).
v Add any DD statements for files required by program A or other programs in

the job step.

If program B is a called program and program A calls B rather than transferring to
B, the runtime JCL for program B consists only of DD statements. In this situation,
you need to create your own program JCL. Any one of the following can serve as a
starting point for the JCL:
v The runtime JCL for another main program that accesses relational databases.
v The JCL template for the appropriate combination of DL/I and DB2.
v The examples shown in Chapter 13, “Preparing and Running Generated

Programs in z/OS Batch,” on page 101 for the appropriate combination of DL/I
and DB2.

You can avoid the modification just described if you include an I/O statement for
an SQL table in the initial main program.

You must modify the JCL that is generated for the first main program in the job in
the following additional situations:

Chapter 12. Creating or Modifying Runtime JCL on z/OS Systems 99

v The first main program does not use DL/I and does not include a PSB, but calls
or transfers to another program that uses DL/I.

v The first main program does not call a CICS program, but it calls or transfers to
another program that calls a program in the CICS region.

If you get a JCL error for the runtime JCL, check the Generation Results view for
the programs involved for any error messages related to JCL generation. In
addition, ensure the tailoring that was done for the JCL templates is correct. Also
check any changes you made when you customized the sample runtime JCL.

100 IBM Rational COBOL Runtime Guide for zSeries

Chapter 13. Preparing and Running Generated Programs in
z/OS Batch

This chapter describes the unique steps required to prepare a generated COBOL
program to run in a z/OS batch environment:
v Running main programs
v Examples of runtime JCL
v Recovery and restart

For general information on preparing your program for the runtime environment,
see Chapter 9, “Output of Program Generation on z/OS Systems.” For information
on modifying the JCL, see Chapter 12, “Creating or Modifying Runtime JCL on
z/OS Systems.”

Running Main Programs under z/OS Batch
A main basic program generated for the z/OS batch environment can be started by
submitting JCL. Called programs can only be started by another EGL program or
by a non-EGL program.

The EGL COBOL generation process creates sample runtime JCL for running
programs in the z/OS batch environment. The generated JCL has same name as
the program. If you set the genRunFile build descriptor option to "YES", sample
JCL is created specifically for the program during program generation. The build
plan uploads the sample runtime JCL to a z/OS partitioned data set (PDS).

The JCL might need to be modified to add data sets required by called or
transferred-to programs. You also need to modify the JCL to add any data sets that
are dynamically allocated with the recordName.resourceAssociation or
converseVar.printerAssociation system variables. See Chapter 12, “Creating or
Modifying Runtime JCL on z/OS Systems,” on page 97 for more information on
modifying the sample runtime JCL.

If you get a JCL error for the runtime JCL, check the Generation Results view for
the programs involved for any error messages related to JCL generation. In
addition, ensure the tailoring that was done for the JCL templates is correct. Also
check any changes you made when you customized the sample runtime JCL.

The following sections show JCL for different z/OS batch programs.

Examples of Runtime JCL for z/OS Batch Programs
The generated JCL in the following examples has these characteristics:
v The examples are based on the JCL templates shipped with EGL. Your actual

JCL templates might differ if your system administrator has tailored them for
your organization. Refer to the EGL Generation Guide in the EGL help system for
more information about tailoring JCL templates.

v Lowercase text appears in the examples where a generic example name has been
substituted for an actual program or data set name.

v EZEPRINT is always routed to SYSOUT=*.

© Copyright IBM Corp. 1994, 2012 101

If you route EZEPRINT to a data set, you must use the following DCB
attributes:
– LRECL=137, BLKSIZE=141, RECFM=VBA if the FormGroup does not contain

any DBCS maps
– LRECL=654, BLKSIZE=658, RECFM=VBA if the FormGroup contains any

DBCS maps
You cannot use FormGroups that do not have any DBCS forms with
FormGroups that do have DBCS forms in the same job step.

Running a Main Basic Program with No Database Access
Figure 12 shows the JCL used to start a main basic program.

If the program calls a CICS program, include the following DD statement in the
STEPLIB:
// DD DSN=CICSTS.V3R1M0.CICS.SDFHEXCI,DISP=SHR

Running a Main Basic Program with DB2 Access
Figure 13 on page 103 shows the JCL used to start a main basic program that gains
access to DB2 resources. The JCL must run the z/OS TSO terminal monitor
program to run the generated program.

//jobname JOB,MSGCLASS=A
//stepnam EXEC PGM=appl-name,REGION=6M
//STEPLIB DD DSN=CEE.SCEERUN,DISP=SHR
// DD DSN=ELA.V6R0M1;.SELALMD,DISP=SHR
// DD DSN=cghlq.env.LOAD,DISP=SHR
//ELAPRINT DD SYSOUT=*,DCB=(RECFM=FBA,BLKSIZE=1330)
//ELASNAP DD SYSOUT=*,DCB=(RECFM=VBA,BLKSIZE=4096)
//EZEPRINT DD SYSOUT=*,DCB=(RECFM=VBA,BLKSIZE=4096)
//SYSABOUT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//* Application specific DD statements
//file-name-1 DD
//file-name-n DD

Figure 12. JCL for Main Basic Program Run as z/OS Batch without DB2 or DL/I Access

102 IBM Rational COBOL Runtime Guide for zSeries

If the program calls a CICS program, include the following DD statement in the
STEPLIB:
// DD DSN=CICSTS.V3R1M0.CICS.SDFHEXCI,DISP=SHR

Running Main Basic Program with DL/I Access
If a main basic program runs as a DL/I batch program, then all DL/I requests are
handled by a private IMS region. The JCL for the step that runs the program must
include DD statements for the IMS log if databases are opened with update intent
or if the program uses the EGL sysLib.audit() system function. Also, a DD
statement must be included for each of the data sets associated with the DL/I
databases referenced in the IMS PSB. The IMS log DD statements (IEFRDER and
IEFRDER2) are normally included in the DLIBATCH procedure.

EGL COBOL generation uses the fda2mdli JCL template to build the DD
statements for program databases. This template has the DD statement commented
out because EGL does not collect the high-level program database qualifiers. You
need to provide the final tailoring of these DD statements in the sample runtime
JCL. Alternatively, depending on your naming conventions, your administrator
might be able to modify the fda2mdli template so that you can use the
symbolicParameter build descriptor option to set high-level qualifiers for
databases. Refer to the EGL Generation Guide in the EGL help system for
information about modifying templates and using the symbolicParameter build
descriptor option.

Figure 14 on page 104 shows the sample JCL used to run a generated program as a
DL/I batch program.

//jobname JOB USER=userid,........
//stepname EXEC PGM=IKJEFT01,DYNAMNBR=20,REGION=4M
//STEPLIB DD DSN=DSN.SDSNLOAD,DISP=SHR
// DD DSN=CEE.SCEERUN,DISP=SHR
// DD DSN=ELA.V6R0M1;.SELALMD,DISP=SHR
// DD DSN=cghlq.env.LOAD,DISP=SHR
//ELAPRINT DD SYSOUT=*,DCB=(RECFM=FBA,BLKSIZE=1330)
//ELASNAP DD SYSOUT=*,DCB=(RECFM=VBA,BLKSIZE=4096)
//EZEPRINT DD SYSOUT=*,DCB=(RECFM=VBA,BLKSIZE=4096)
//SYSABOUT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSTSIN DD *
DSN SYSTEM (ssid)
RUN PROG (appl-name) PLAN (plan-name) -

LIB (’cghlq.env.LOAD’)
END
/*
//SYSTSPRT DD SYSOUT=*
//* Application specific DD statements
//file-name-1 DD
//file-name-n DD

Figure 13. JCL for Main Basic Program Run as z/OS Batch with DB2 Access

Chapter 13. Preparing and Running Generated Programs in z/OS Batch 103

Running a Main Basic Program with DB2 and DL/I Access
Figure 15 on page 105 shows the JCL that enables a program to run as a
stand-alone DL/I batch processing program and to gain access to DB2 databases.
Special recovery considerations are required. Refer to the DB2 documentation for
your system for additional information.

The JCL for the step that runs the program must include DD statements for the
IMS log if databases are opened with update intent or if the program uses the EGL
sysLib.audit() system function. Also, a DD statement must be included for each of
the data sets associated with the DL/I databases referenced in the IMS PSB. The
IMS log DD statements (IEFRDER and IEFRDER2) are normally included in the
DLIBATCH procedure.

EGL COBOL generation uses the JCL template fda2mdli to build the DD
statements for DL/I program databases. This template has the DD statement
commented out because EGL does not collect the high-level program database
qualifiers. You need to provide the final tailoring of these DD statements in the
sample runtime JCL. Alternatively, depending on your naming conventions, your
administrator might be able to modify the fda2mdli template so that you can use
the symbolicParameter build descriptor option to set high-level qualifiers for
databases. Refer to the EGL Generation Guide for information about modifying
templates and using the symbolicParameter build descriptor option.

//jobname JOB
//stepname EXEC DLIBATCH,DBRC=Y,
// MBR=appl-name,PSB=ims-psb-name,BKO=Y,IRLM=N
//G.STEPLIB DD
// DD
// DD DSN=CEE.SCEERUN,DISP=SHR
// DD DSN=ELA.V6R0M1;.SELALMD,DISP=SHR
// DD DSN=cghlq.env.LOAD,DISP=SHR
//* DFSVSAMP IS REQUIRED IF VSAM DATABASES - REPLACE MEMBER WITH
//* ONE THAT HAS VALID BUFFER POOL SIZES FOR YOUR APPLICATION
//G.DFSVSAMP DD DSN=ELA.V6R0M1;.ELASAMP(ELAVSAMP),DISP=SHR
//G.ELAPRINT DD SYSOUT=*,DCB=(RECFM=FBA,BLKSIZE=1330)
//G.ELASNAP DD SYSOUT=*,DCB=(RECFM=VBA,BLKSIZE=4096)
//G.EZEPRINT DD SYSOUT=*,DCB=(RECFM=VBA,BLKSIZE=4096)
//G.SYSABOUT DD SYSOUT=*
//G.SYSOUT DD SYSOUT=*
//* Application specific DD statements including DL/I DB DD statements
//file-name-1 DD
//file-name-n DD

Figure 14. JCL for Main Basic Program Run as z/OS Batch with DL/I Access

104 IBM Rational COBOL Runtime Guide for zSeries

Recovery and Restart for z/OS Batch Programs
For z/OS batch programs that use DL/I, the generated sample runtime JCL
includes the parameter BKO=Y. If the program updates databases or files, specify
BKO=Y in the runtime JCL in order to have rollback (ROLB) requests honored. If
you specify BKO=N, DL/I returns status code AL for the roll-back call. Rational
COBOL Runtime treats the AL status code as a soft error. No error message is
issued, and processing continues.

You should develop recovery procedures in the event of program or system errors.
Rational COBOL does not generate JCL to perform restart or recovery procedures.

//jobname JOB
//stepname EXEC DLIBATCH,DBRC=Y,
// MBR=DSNMTV01,PSB=ims-psb-name,BKO=Y,IRLM=N
//G.STEPLIB DD
// DD
// DD DSN=DSN.SDSNLOAD,DISP=SHR
// DD DSN=CEE.SCEERUN,DISP=SHR
// DD DSN=ELA.V6R0M1;.SELALMD,DISP=SHR
// DD DSN=cghlq.env.LOAD,DISP=SHR
//* DFSVSAMP IS REQUIRED IF VSAM DATABASES - REPLACE MEMBER WITH
//* ONE THAT HAS VALID BUFFER POOL SIZES FOR YOUR APPLICATION
//G.DFSVSAMP DD DSN=ELA.V6R0M1;.ELASAMP(ELAVSAMP),DISP=SHR
/*
//G.DDOTV02 DD DSN=&&TEMP1,
// DISP=(NEW,PASS,DELETE),
// SPACE=(CYL,(1,1),RLSE),UNIT=SYSDA,
// DCB=(RECFM=VB,BLKSIZE=4096,LRECL=4092)
//G.DDITV02 DD *

ssid,SYS1,DSNMIN10,,R,-,connection name,plan-name,appl-name
/*
//G.ELAPRINT DD SYSOUT=*,DCB=(RECFM=FBA,BLKSIZE=1330)
//G.ELASNAP DD SYSOUT=*,DCB=(RECFM=VBA,BLKSIZE=4096)
//G.EZEPRINT DD SYSOUT=*,DCB=(RECFM=VBA,BLKSIZE=4096)
//G.SYSABOUT DD SYSOUT=*
//G.SYSOUT DD SYSOUT=*
//* Application specific DD statements including DL/I DB DD statements
//file-name-1 DD
//file-name-2 DD
//*
//* Attempt to print out the DDOTV02 data set created in previous step
//stepnam2 EXEC PGM=DFSERA10,COND=EVEN
//STEPLIB DD DSN=IMSVS.RESLIB,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSNAME=&&TEMP1,
// DISP=(OLD,DELETE)
//SYSIN DD *
CONTROL CNTL K=000,H=8000
OPTION PRINT
/*

Figure 15. JCL for Main Basic Program Run as z/OS Batch with DB2 and DL/I Access

Chapter 13. Preparing and Running Generated Programs in z/OS Batch 105

106 IBM Rational COBOL Runtime Guide for zSeries

Chapter 14. Preparing and Running Generated Programs in
IMS/VS and IMS BMP

This chapter describes the steps required to prepare and run a generated COBOL
program in an IMS environment:
v Modify the IMS system definition parameters
v Create the MFS control blocks
v Precompile, compile, link, and bind the generated program
v Make the new modules and MFS control blocks available to IMS
v Create or modify runtime JCL (IMS BMP only)

For general information on preparing programs for the runtime environment, see
Chapter 9, “Output of Program Generation on z/OS Systems,” on page 71. For
information about modifying JCL, see Chapter 12, “Creating or Modifying Runtime
JCL on z/OS Systems,” on page 97.

Modifying the IMS System Definition Parameters
The following information describes the basic IMS system definition parameters
that are required to run EGL-generated programs. You should review the
performance options described in the IMS documentation for your system to
determine the most effective options.

An IMS TRANSACT macro is required for each transaction code used to start an
EGL main program in the IMS/VS environment and for each transaction-oriented
BMP program. This includes the following transactions:
v Started from a clear IMS screen
v Used as a sysVar.transactionID

v Used as the target of a transfer to transaction, show, or vgLib.startTransaction()
statement

v Transferred to by a non-EGL program
v Started as the result of an add statement that adds a transaction to a message

queue
v Started by other IMS facilities

The TRANSACT macro must follow the APPLCTN macro for the IMS PSB that is
to be used for the transaction.

Defining an Interactive Program
Each main transaction program must be defined as either an IMS message
processing program (MPP) or a fast-path program with an associated transaction
code, except when the program is started through a transfer statement of the form
transfer to a program from another program.

Figure 16 on page 108 shows the system definition parameters that are required for
defining an interactive EGL program.

© Copyright IBM Corp. 1994, 2012 107

1 The IMS PSB name and the EGL program name must match.

2 Multiple transactions can be associated with one program. If the program
changes the value of sysVar.transactionID before a converse, include a
TRANSACT macro for the original transaction code and a TRANSACT
macro for the sysVar.transactionID value.

3 INQUIRY=NO is the default for IMS. If DL/I is used for the work
database, INQUIRY=NO is required. The Rational COBOL Runtime work
database supports help forms and displays data again if an input error
occurs, as well as the converse statement. Therefore, even if the program
databases are inquiry only, INQUIRY=NO is necessary. If DB2 is used for
the work database and the program’s use of all DL/I databases is inquiry
only, then INQUIRY=YES can be used.

4 SNGLSEG is required. Either RESPONSE or NONRESPONSE can be used
with Rational COBOL Runtime, depending on whether you want the
keyboard to remain locked until the transaction completes. Even if
NONRESPONSE mode is used, multiple simultaneous transactions from a
single terminal are not supported.

5 Required for input in lowercase.

6 Include this parameter only if an IMS scratch pad area (SPA) is required.
The SPA size is the length of the IMS SPA header (14 bytes) plus the length
of the longest working storage record that might be received or sent during
a transfer to transaction or show statement. However, if you include the
spaStatusBytePosition and omit the spaADF build descriptor options, then
you must add an additional byte when calculating the size. The SPA size
must match the number specified for the spaSize build descriptor option
when the program is generated.

You can also include the FPATH=YES parameter on the TRANSACT macro if the
program might be run in an IMS Fast Path (IFP) region. If you include
FPATH=YES, be sure to include the imsFastPath="YES" build descriptor option
when you generate the program. Refer to the IMS manuals for your system for
additional information about using IFP regions.

Defining Parameters for a Main Basic Program as an MPP
An EGL main basic program can also run as an asynchronous MPP. For example,
an EGL main basic program can be used to process the information inserted to the
message queue by a sysLib.startTransaction() statement or an add statement in
another program. This type of program differs from one that runs as an IMS BMP
in that the MPP cannot access any GSAM, indexed, or relative files, and cannot
include any special restart logic. Figure 17 on page 109 shows the system definition
parameters required for this case.

APPLCTN PGMTYPE=TP,PSB=ims-psb-name. 1
TRANSACT CODE=trancode, X2

INQUIRY=NO, X3
MODE=SNGL, X
MSGTYPE=(SNGLSEG,RESPONSE), X4
EDIT=ULC, X5
SPA=(size,[DASD|CORE],[FIXED]) 6

Figure 16. IMS System Definition for an Interactive Transaction

108 IBM Rational COBOL Runtime Guide for zSeries

1 The IMS PSB name and the EGL program name must match.

2 Multiple transactions can be associated with one program.

You can also include the FPATH=YES parameter on the TRANSACT macro if the
program might be run in an IMS Fast Path (IFP) region. If you include
FPATH=YES, be sure to include the imsFastPath=YES build descriptor option
when you generate the program. Refer to the IMS manuals for your system for
additional information about using IFP regions.

Defining Parameters for a Batch-Oriented BMP Program
If an EGL main basic program is generated to run as an IMS BMP program and it
does not process an input message queue, it is a batch-oriented BMP program.
Figure 18 shows the system definition parameters required for defining a main
basic program as a batch-oriented BMP program.

Defining Parameters for a Transaction-Oriented BMP Program
If an EGL main basic program is generated to run as an IMS BMP program and it
processes an input message queue created by MPP programs or by other BMP
programs, it is a transaction-oriented BMP program. Figure 19 shows the system
definition parameters that are required to define a main basic program as a
transaction-oriented BMP program.

1 Multiple transactions can be associated with one program.

2 Wait-for-input (WFI) is optional. If it is specified, the program remains
resident until the operator stops the transaction or shuts down the region.

Creating MFS Control Blocks
EGL generates message format services (MFS) control blocks when a FormGroup is
generated for the IMS environment. The build script FDAMFS is used. FDAMFS
has functionality similar to that of the MFSUTL and the MFSTEST JCL procedures
that ship with the IMS product. When you generate the FormGroup, you specify
the mfsUseTestLibrary build descriptor option to choose between the functionality
of MFSUTL and MFSTEST. YES indicates MFSTEST.

When you set mfsUseTestLibrary to YES, the variable MFSTEST is set to YES in
the build plan. The build script FDAMFS uses this variable to determine which of
the JCL procedures (MFSUTL or MFSTEST) to follow. Refer to the message format

APPLCTN PGMTYPE=TP,PSB=ims-psb-name 1
TRANSACT CODE=trancode, X 2

MODE=SNGL

Figure 17. IMS System Definition for an Asynchronous MPP Program

APPLCTN PGMTYPE=BATCH,PSB=ims-psb-name

Figure 18. IMS System Definition for a Main Basic Program Running as a Batch-Oriented
BMP Program

APPLCTN PGMTYPE=BATCH,PSB=ims-psb-name
TRANSACT CODE=trancode, X 1

MODE=SNGL, X
WFI 2

Figure 19. IMS System Definition for a Main Basic Program Running as a
Transaction-Oriented BMP Program

Chapter 14. Preparing and Running Generated Programs in IMS/VS and IMS BMP 109

services documentation for your system for additional information about the MFS
control blocks. Refer to the EGL Generation Guide for more information about the
build descriptor options that control what is included in the MFS source.

If your program contains DBCS or mixed data, note that a long mixed constant
field that results in multiple lines of MFS source might contain unpaired shift-in
and shift-out characters. This occurs when the DBCS portion of the constant is split
into more than one line. The MFS still works correctly.

Making New Modules Available in the IMS Environment
Whenever you install a new version of a program, MFS print services program,
FormGroup format module, or DataTable, you need to recycle the message region.

If you generated with mfsUseTestLibrary="YES", then the MFS control blocks
were placed in the MFS test library (the TFORMAT library). To use the new
version of the MFS control blocks, use the /TEST MFS command after you have
signed on your IMS system and before you attempt to run a transaction that uses
the new version of the forms.

If you generated with mfsUseTestLibrary="NO", then the MFS control blocks were
placed in the MFS staging library (FORMAT library). To use the new version of the
MFS control blocks, you must do the following:
1. Run the IMS online change utility (OLCUTL) to copy the new MFS control

blocks into the inactive format library.
2. Use the following IMS commands:

/MODIFY PREPARE FMTLIB
/MODIFY COMMIT

Note: If the MFS control blocks and the FormGroup format module do not have
the same generation date and time, Rational COBOL Runtime issues an error
message.

Preloading Program, Print Services, and DataTable Modules
Preloading programs, MFS print services programs, FormGroup format modules,
and DataTable modules that are frequently used might reduce the overhead of
searching the STEPLIB, JOBLIB, link pack area, and link list. However, if modules
are preloaded, they occupy virtual storage when they are not in use.

To improve response time, you might also preload modules associated with any
transaction that might require better performance, even though the module itself is
not frequently used.

To preload a program, MFS print services program, FormGroup format module, or
DataTable program, have your system administrator do the following:
1. Put the module in a LNKLST library.
2. Include the module name in a preload member (DFSMPLxx, where xx is a

two-character ID that you select) in IMSVS.PROCLIB.
3. Indicate in the JCL for the IMS message region that the preload member is to

be included.

For general information on preloading modules, see the IMS manuals for your
system.

110 IBM Rational COBOL Runtime Guide for zSeries

Running Programs under IMS
Prior to starting a generated program, the program user might be required to sign
on to the IMS environment with a /SIGN command. Refer to the IMS
documentation for information about the /SIGN command.

Starting a Main Program Directly
The simplest way for a program user to start an EGL program is by entering the
IMS transaction code from an unformatted screen. The transaction code can be up
to 8 characters. It is associated with the program in the IMS system definition
TRANSACT macro. The following is an example of starting a transaction:
MYTRANS

IMS requires the transaction code to be followed by at least one blank prior to
pressing the ENTER key.

Starting a Main Transaction Program Using the /FORMAT
Command

A program user can use the IMS /FORMAT command to display a formatted
screen to start a transaction if the inputForm specified for a program is defined
with the IMS transaction code for the program as an 8-byte constant with the
protect=protect and intensity=invisible properties. The attribute byte on the form
becomes the attribute byte in the generated MFS. The 8-byte constant contains the
name of the IMS transaction that is started when the form is processed.

The /FORMAT command directs IMS to display a screen format; however, the
command does not cause the program to be run. After the program user enters
data and presses the Enter key (or a function key), the message from the terminal
is sent to the generated program for processing.

The syntax of the /FORMAT command is as follows:
/FORMAT modname [formName]

or
/FOR modname [formName]

The modname operand is the FormGroup name (or alias name, up to a maximum of
6 characters) with an O suffix. The formName operand is required if there is more
than one form in the FormGroup. It must be the form name that was specified as
the inputForm for the program.

Because the transaction code must be included in the form, and a transaction code
can only be associated with one program in the IMS system definition, only one
program using the form can be started using the /FORMAT command.

Running Transaction Programs as IMS MPPs
Running generated programs is similar to running non-EGL-generated programs in
the IMS MPP environment, with the following differences:

IMS Commands
The /HOLD command should be avoided. Rational COBOL Runtime uses the
logical terminal identifier as the key of the work database. The data in the work
database is destroyed if another generated program is run from the same terminal
prior to resuming the original conversation.

Chapter 14. Preparing and Running Generated Programs in IMS/VS and IMS BMP 111

Keyboard Key Operation
When the Clear key is pressed in IMS, IMS clears the screen, but does not notify
the program. No transaction is scheduled, so the form is not automatically
displayed again. If the program is conversational, the program user can enter the
IMS /HOLD command followed immediately by an IMS /RELEASE command to
display the form again.

When the EOF key is pressed in the first position of a field on a form, the data is
not blanked. To blank the data, the program user must enter at least one blank
before pressing the EOF key. Also, the program user should not use the DELETE
CHARACTER key to erase the entire field because this is equivalent to pressing
the EOF key in the first position of the field.

When typing over characters in a right-justified numeric field, any intervening
spaces between the new digits entered and the original digits in the field should be
deleted by pressing the DELETE CHARACTER key. Alternatively, the program
user can type in all the digits for the new value and then use the EOF key to erase
any remaining digits.

DBCS Data on a Non-DBCS Terminal
If a program inadvertently attempts to display a form with DBCS or mixed data on
a non-DBCS terminal or printer, the results are unpredictable. The terminal might
be logged off IMS and returned to the VTAM® sign-on screen without displaying
any warning or error messages. If this happens, review your use of DBCS. Also,
review your values for the mfsDevice , mfsExtendedAttr, and mfsIgnore build
descriptor options, and compare them to the IMS system definition for the terminal
that had the problem.

Error Reporting
In certain error situations, Rational COBOL Runtime displays its own panel to
explain the error to the program user. This occurs in the following situations:
v A message needs to be displayed, but the msgField property is not specified for

the form. Form ELAM01 in FormGroup ELAxxx, where xxx is the national
language code, is used.

v An unexpected program error has occurred. Form ELAM02 and (if necessary)
continuation form ELAM03 are used to display the error messages. See “Using
the Rational COBOL Runtime Error Panel” on page 144 for an example of
ELAM02.

If an error occurs information might have been written to the message queue
identified by the errorDestination build descriptor option for the first program in
the run unit. See “IMS Diagnostic Message Print Utility” on page 135 for
information on printing diagnostic errors.

Responding to IMS Error Messages
If a DFS message is displayed on your screen, make a note of the message. Then,
depending on how your IMS system is set up, press either PA1 or PA2 to see if
Rational COBOL Runtime has queued an error form to the terminal with more
information. This can happen in the following situations:
v If Rational COBOL Runtime issues a ROLL call because of a run unit or

catastrophic error, IMS issues the message:
DFS555I TRAN tttttttt ABEND S000,U0778 ; MSG IN PROCESS:
tttttttt mmmmmmmmMAP ;;;;gdate gtime rdate rtime

112 IBM Rational COBOL Runtime Guide for zSeries

Where tttttttt is the IMS transaction code, mmmmmmmm is the form name, gdate
and gtime are the date and time the FormGroup was generated, and rdate and
rtime are the date and time of the abend.
The DFS555I message is also used by IMS when other abends occur, including
the 1600, 1601, 1602, and 1606 abends from Rational COBOL Runtime.

v If Rational COBOL Runtime ends the run unit for a transaction program that
was generated with imsFastPath="YES" and is being run in an IMS fast-path
region, IMS issues the message:
DFS2766I PROCESS FAILED

v If Rational COBOL Runtime abnormally ends the logical unit of work (LUW) for
a transaction program that was generated with imsFastPath="YES", IMS might
issue the message:
DFS2082I RESPONSE MODE TRANSACTION TERMINATED WITHOUT REPLY

See Chapter 18, “Diagnosing Problems for Rational COBOL Runtime on z/OS
Systems,” on page 139 for information on diagnosing errors.

Running Main Basic Programs as MPPs
An EGL main basic program can be generated to run in the IMS MPP
environment. In this situation, IMS automatically starts the transaction whenever a
message is written to the message queue associated with the transaction.

If an error occurs information might have been written to the message queue
identified by the errorDestination build descriptor option for the first program in
the run unit. See “IMS Diagnostic Message Print Utility” on page 135 for
information on printing diagnostic errors.

Running a Main Basic Program under IMS BMP
A main basic program generated for the IMS BMP environment can be started by
submitting JCL. Called programs can only be started by another EGL program or
by a non-EGL program.

The EGL COBOL generation process creates sample runtime JCL for running
programs in the IMS BMP environment. The generated JCL has the same name as
the program. If you set the genRunFile build descriptor option to YES, sample JCL
is created specifically for the program during program generation. The build plan
uploads the sample runtime JCL to a z/OS partitioned data set (PDS).

The JCL might need to be modified to add data sets required by called or
transferred-to programs. You also need to modify the JCL to add any data sets that
are dynamically allocated with the recordName.resourceAssociation or
converseVar.printerAssociation system variables. See Chapter 12, “Creating or
Modifying Runtime JCL on z/OS Systems,” on page 97 for more information on
modifying the sample runtime JCL.

If you get a JCL error for the runtime JCL, check the Generation Results view for
the programs involved for any error messages related to JCL generation. In
addition, ensure the tailoring that was done for the JCL templates is correct. Also
check any changes you made when you customized the sample runtime JCL.

The following sections show JCL for different IMS BMP programs.

Chapter 14. Preparing and Running Generated Programs in IMS/VS and IMS BMP 113

Examples of Runtime JCL for IMS BMP Programs
The generated JCL in the following examples has these characteristics:
v The examples are based on the JCL templates shipped with EGL. Your actual

JCL templates might differ if your system administrator has tailored them for
your organization. Refer to the EGL Generation Guide for more information about
tailoring JCL templates.

v Lowercase text appears in the examples where a generic example name has been
substituted for an actual program or data set name.

v EZEPRINT is always routed to SYSOUT=*.
If you route EZEPRINT to a data set, you must use the following DCB
attributes:
– LRECL=137, BLKSIZE=141, RECFM=VBA if the FormGroup does not contain

any DBCS forms
– LRECL=654, BLKSIZE=658, RECFM=VBA if the FormGroup contains any

DBCS forms
You cannot use FormGroups that do not have any DBCS forms with
FormGroups that do have DBCS forms in a single job step.

The first library in the STEPLIB concatenation sequence must have the largest
block size, or BLKSIZE=32760 can be specified on the first STEPLIB DD statement
for the step.

Running a Main Basic Program as an IMS BMP Program
If a main basic program runs as an IMS BMP program, all DL/I requests are
passed to a central copy of IMS which coordinates updates to the databases across
multiple BMPs and MPPs. The DD statements for the IMS log and the program
databases are not required in the JCL for the BMP job step. These databases and
the IMS log are allocated to the IMS control region.

Figure 20 shows a sample set of JCL to run a generated program as a BMP
program.

If you run a transaction-oriented BMP program, the trans-name must be set to the
name of the transaction for the message queue that the BMP program processes. If
not, trans-name should be a null value. The sample runtime JCL created by EGL
defaults trans-name to the program name for a transaction-oriented BMP program

//jobname JOB
//stepname EXEC IMSBATCH,
// MBR=appl-name,PSB=ims-psb-name,IN=trans-name
//G.STEPLIB DD
// DD
// DD DSN=CEE.SCEERUN,DISP=SHR
// DD DSN=ELA.V6R0M1;.SELALMD,DISP=SHR
// DD DSN=cghlq.env.LOAD,DISP=SHR
//G.ELAPRINT DD SYSOUT=*,DCB=(RECFM=FBA,BLKSIZE=1330)
//G.ELASNAP DD SYSOUT=*,DCB=(RECFM=VBA,BLKSIZE=4096)
//G.EZEPRINT DD SYSOUT=*,DCB=(RECFM=VBA,BLKSIZE=4096)
//G.SYSABOUT DD SYSOUT=*
//G.SYSOUT DD SYSOUT=*
//* Application specific DD statements for files
//* No application specific DD statements for databases required
//file-name-1 DD
//file-name-n DD

Figure 20. JCL for Main Basic Program as an IMS BMP Program

114 IBM Rational COBOL Runtime Guide for zSeries

that uses get next to read the message queue. The sample runtime JCL created by
EGL defaults trans-name to null for batch-oriented BMP programs or for
transaction-oriented BMP programs that use VGLib.VGTDLI(), dliLib.AIBTDLI(),
or dliLib.EGLTDLI() to read the message queue.

If the BMP program uses GSAM, the following DD statements are also included in
the sample runtime JCL:
//IMS DD DSN=IMS.PSBLIB,DISP=SHR
// DD DSN=IMS.DBDLIB,DISP=SHR

These DD statements are generated from the fda2mims JCL template.

Running a Main Basic Program as an IMS BMP Program with
DB2 Access

Figure 21 shows a sample set of JCL to run a generated program that accesses DB2
resources as a BMP. The DD statements for the IMS log and the DL/I program
databases are not required in the JCL for the BMP job step. The DL/I databases
and the IMS log are allocated to the IMS control region.

If you run a transaction-oriented BMP program, the trans-name must be set to the
name of the transaction for the message queue that the BMP program processes. If
not, trans-name should be a null value. The sample runtime JCL created by EGL
defaults trans-name to the program name for a transaction-oriented BMP program
that uses get next to read the message queue. The sample runtime JCL created by
EGL defaults trans-name to null for batch-oriented BMP programs or for
transaction-oriented BMP programs that use VGLib.VGTDLI(), dliLib.AIBTDLI(),
or dliLib.EGLTDLI() to read the message queue.

If the BMP program uses GSAM, the following DD statements are also included in
the sample runtime JCL:
//IMS DD DSN=IMS.PSBLIB,DISP=SHR
// DD DSN=IMS.DBDLIB,DISP=SHR

These DD statements are generated from the fda2mims JCL template.

//jobname JOB
//stepname EXEC IMSBATCH,
dliLib.// MBR=appl-name,PSB=ims-psb-name,IN=trans-name
//G.STEPLIB DD
// DD
// DD DSN=DSN.SDSNLOAD,DISP=SHR
// DD DSN=CEE.SCEERUN,DISP=SHR
// DD DSN=ELA.V6R0M1;.SELALMD,DISP=SHR
// DD DSN=cghlq.env.LOAD,DISP=SHR
//G.DFSESL DD DSN=IMS.RESLIB,DISP=SHR
// DD DSN=DSN.SDSNLOAD,DISP=SHR
//G.ELAPRINT DD SYSOUT=*,DCB=(RECFM=FBA,BLKSIZE=1330)
//G.ELASNAP DD SYSOUT=*,DCB=(RECFM=VBA,BLKSIZE=4096)
//G.EZEPRINT DD SYSOUT=*,DCB=(RECFM=VBA,BLKSIZE=4096)
//G.SYSABOUT DD SYSOUT=*
//G.SYSOUT DD SYSOUT=*
//* Application specific DD statements for files
//* No application specific DD statements for databases required
//file-name-1 DD
//file-name-n DD

Figure 21. JCL for Main Basic Program as an IMS BMP Program with DB2

Chapter 14. Preparing and Running Generated Programs in IMS/VS and IMS BMP 115

Recovery and Restart for IMS BMP Programs
You should develop recovery procedures in the event of program or system error.
Rational COBOL does not generate JCL to perform restart or recovery procedures.

If your IMS BMP program ends with a run unit or catastrophic error, all updates
after the last checkpoint are rolled back and the program ends. You should include
checkpoint and restart logic in the program if it is to run as an IMS BMP. Refer to
the IMS documentation for your system for additional information about
checkpoint and restart.

116 IBM Rational COBOL Runtime Guide for zSeries

Chapter 15. Moving Prepared Programs to Other Systems
from z/OS Systems

You might need to move a prepared program from one system to another. For
example you might have the compiler on one host development machine but want
to run the program on several production machines.

If you use DB2, the DB2 BIND must be done on the production system.

The COBOL and Rational COBOL Runtime products on the production machine
must be at the same maintenance level as, or a higher level than, on the
development machine.

Moving Prepared Programs To Another z/OS System
If a program has been completely prepared on one system and you want to move
the prepared program to another system, perform the following steps:
1. Copy the program-related parts (including the FormGroup and DataTable

parts) to the production system. The names of the source libraries are shown
with the default naming convention used in the build scripts, where cghlq is
the user or project-related high level qualifier and env is the runtime
environment code.

Table 20. Parts to Copy

Data Set Name Contents

cghlq.env.LOAD Program, library, service, print services
program, FormGroup format modules, and
DataTable modules.

cghlq.env.DBRMLIB DB2 database request modules (DBRMs) for
SQL programs

cghlq.env.EZEBIND BIND commands for SQL programs

cghlq.env.EZEMFS MFS source for IMS/VS and IMS BMP
FormGroups

cghlq.env.EZEJCLX Runtime JCL for IMS BMP and z/OS batch
programs

Note:

The cghlq variable comes from the projectID build descriptor option. The env variable comes
from the system build descriptor option.

2. Provide your own JCL to build the plans for DB2 programs using the BIND
commands from the BIND library and the DBRMs from the DBRM library. You
need to edit the EZEBIND member, and make the appropriate changes such as
DB2 subsystem name or collection IDs to match the new system where you are
moving the program.

3. Provide your own JCL to assemble the MFS control blocks for IMS/VS and IMS
BMP. It is much easier to assemble the MFS source on the production system
than to try to locate the DIF/DOF and MID/MOD in the MFS format libraries.
However, if you have procedures in place to move the DIF/DOF and
MID/MOD to a different system, you can use these procedures instead of
moving the MFS source in the EZEMFS library.

© Copyright IBM Corp. 1994, 2012 117

4. Follow the procedures identified in this manual for defining programs to CICS
or IMS.

5. Define files and databases used by the program on the new system.

Maintaining Backup Copies of Production Libraries
Follow your installation-defined guidelines and procedures for making backup
copies of production libraries. Having backup copies of production libraries
enables you to return to the prior level of a program in case of errors. The
production libraries for which copies should be made are those listed in Table 20
on page 117.

118 IBM Rational COBOL Runtime Guide for zSeries

Part 4. Utilities

Chapter 16. Using Rational COBOL Runtime
Utilities for z/OS CICS Systems 121
Using the CICS Utilities Menu. 121

New Copy 122
Diagnostic Message Printing Utility 124
Diagnostic Control Options for z/OS CICS
Systems 125

Change or View Diagnostic Control Options
for a Transaction 126
Change or View Default Diagnostic Control
Options 128

Using the Parameter Group Utility for z/OS CICS
Systems 129

Chapter 17. Using Rational COBOL Runtime
Utilities for IMS Systems 135
IMS Diagnostic Message Print Utility 135

© Copyright IBM Corp. 1994, 2012 119

120 IBM Rational COBOL Runtime Guide for zSeries

Chapter 16. Using Rational COBOL Runtime Utilities for z/OS
CICS Systems

Rational COBOL Runtime provides a set of utilities in CICS to help manage the
error diagnosis and control facilities of the Rational COBOL Runtime runtime
environment. You can access these utilities from the CICS utilities menu.

Using the CICS Utilities Menu
To access the CICS utilities do the following:
1. Log on to CICS.
2. Type ELAM on a clear screen.
3. Press Enter. When the ELAM transaction is started, a copyright panel is

displayed.
4. Press Enter. The CICS Utilities Menu (Figure 22) is displayed.

Three functions are available from the CICS Utilities Menu panel (Figure 22):

New Copy
This function causes a new copy of a program, FormGroup, or DataTable
to be used by subsequent transactions. Use the new copy function when
programs, libraries, services, FormGroups, and DataTables are modified
and generated again.

For programs, libraries, services, and FormGroups, you can use either the
Rational COBOL Runtime new copy utility or the CICS NEWCOPY
command to cause the new copy of the program to be used the next time a
load request is issued for the program.

ELAM Rational COBOL Runtime
CICS Utilities Menu

Select one of the following utilities; then press Enter.

Action...._

_1. New Copy
_2. Diagnostic Message Printing
_3. Diagnostic Control Options

ENTER F1=HELP F3=EXIT

Figure 22. CICS Utilities Menu

© Copyright IBM Corp. 1994, 2012 121

The Rational COBOL Runtime new copy utility does a new copy for both
the online print services program and the FormGroup format module
when you specify a part type of FormGroup. If you use the CICS
NEWCOPY command for a FormGroup, you must issue the NEWCOPY
for both the online print services program and the FormGroup format
module.

For a DataTable, you must use the Rational COBOL Runtime new copy
utility to cause a fresh copy of the DataTable to be used the next time a
load request is issued for the DataTable. Do not use the CICS NEWCOPY
command for DataTables.

Diagnostic Message Printing
This function routes the diagnostic messages in an error destination
transient data queue to a spool file for printing or subsequent processing.

Diagnostic Control Options
This function lets you view or change the diagnostic control options set for
the installation or for individual transactions. The options include dump
control, error message routing to a transient data queue or the CICS
journal, and transaction disabling when serious problems occur.

New Copy
The Rational COBOL Runtime new copy utility causes a new copy of a program,
FormGroup, or DataTable to be used by subsequent transactions. Transactions that
are in progress when this function was started continue to use the copy that was
current when the transaction began. Programs must end or reach a segment break
before the new copy is used.

The Rational COBOL Runtime new copy utility must be run separately for
programs, libraries, services, FormGroups, and DataTables to replace the copy
already in storage.

To gain access to the Rational COBOL Runtime new copy utility, do the following:
1. Select option 1, New Copy, on the CICS Utilities Menu panel (Figure 22).
2. Press Enter.

The New Copy panel (Figure 23 on page 123) is displayed.

Note: You can also gain access to the Rational COBOL Runtime new copy utility
by doing the following:
1. Type ELAN on a clear screen.
2. Press Enter. When the ELAN transaction is started, a copyright panel is

displayed.
3. Press Enter. The New Copy panel (Figure 23 on page 123) is displayed.

122 IBM Rational COBOL Runtime Guide for zSeries

Enter the following on the New Copy panel:

Part name
Specifies the name of the program, FormGroup, or DataTable to be used as
a new copy in subsequent transactions

Part type
Specifies the type of part to be replaced

Note: Rational COBOL Runtime does not validate the part type. You must
specify the correct type because different processing is required for
programs, FormGroups, and DataTables. If you have problems in
processing after using the Rational COBOL Runtime new copy
utility, try the Rational COBOL Runtime new copy utility again to
ensure you specified the part type correctly.

The correct type can be one of the following:

Program
This type causes the utility to issue a CICS SET PROGRAM(name)
NEWCOPY command to access a new copy of the program, library,
or service. This command does not cause a new copy for called
programs that are statically linked with their caller.

Map Group
(EGL FormGroup) This type causes the utility to issue a CICS SET
PROGRAM(name) NEWCOPY command to access a new copy of
the FormGroup format module and the online print services
program associated with the FormGroup.

Table (EGL DataTable) This type causes the utility to issue a CICS SET
PROGRAM(name) NEWCOPY command to access a new copy of
the DataTable program and sets a flag for Rational COBOL
Runtime, indicating that a new copy of the DataTable is to be used
the next time a program loads the DataTable contents.

ELAN Rational COBOL Runtime
New Copy

Type choices; then press Enter.

Part name........... _______

Part type........... _
1. Program
2. Map Group
3. Table

ENTER F1=HELP F3=EXIT

Figure 23. New Copy panel

Chapter 16. Using Rational COBOL Runtime Utilities for z/OS CICS Systems 123

If the DataTable has been generated as a shared DataTable,
currently running transactions continue to use the old copy of the
DataTable while new transactions share the new copy of the
DataTable.

You can also access the new copy utility in batch mode. To invoke the batch new
copy utility, link to program ELABNEW:
EXEC CICS LINK PROGRAM("ELABNEW")
COMMAREA(passed-parms)
LENGTH(174)

where the passed-parms record has the following structure:

Field Length in
Bytes

Type of Data Description

NLS code 3 Character NLS code identifying the language

Part name 8 Character Name of program, FormGroup, or
DataTable to be used as a new
copy in subsequent transactions

Part type 1 Character Type of part to be replaced:

"1" Program, Library, Service

"2" FormGroup

"3" DataTable

For more information, press F1 to
see the description for part type.

Return code 2 Binary Return code from new copy

Message 1 80 Character Message returned from new copy

Message 2 80 Character Message returned from new copy

The following fields must be provided by the user:
v NLS code
v Part name
v Part type

The other fields are filled in by the new copy utility.

Any nonzero return code means that the new copy operation was not successful. If
a nonzero value is returned in the return code field, check messages 1 and 2 for
details indicating what error occurred.

Note: Message 2 is not always filled in. It may be blank.

Diagnostic Message Printing Utility
Diagnostic message printing allows you to route diagnostic messages in an error
destination transient data queue to a JES spool file for printing.

To gain access to the diagnostic message print utility do the following:
1. Select option 2, Diagnostic Message Printing, from the CICS Utilities Menu

panel (Figure 22 on page 121).
2. Press Enter.

The Diagnostic Message Printing panel (Figure 24 on page 125) is displayed.

124 IBM Rational COBOL Runtime Guide for zSeries

Note: You can also access the diagnostic message print function by doing the
following:
1. Type ELAU on a clear screen.
2. Press Enter. When ELAU is started, a copyright panel is displayed.
3. Press Enter. The Diagnostic Message Printing panel (Figure 24) is

displayed.

You can enter information in the following fields on the Diagnostic Message
Printing panel:

Error destination queue name
This field specifies the name of an existing error destination.

Enter the 1 to 4 character DCT name of the error destination transient data
queue. The default is ELAD. You can either leave the messages in the
queue or clear them after they have been printed.

JES Spool File Information
This field specifies the spool file where the messages are to be written. If
you do not specify anything in these fields, the system uses the default
values (shown in Figure 24) which route the report to the local spool
printer for your CICS system.

Clear destination queue
This field specifies whether to clear the error queue of all messages after
the messages are written to a spool file. The default is Y.

Diagnostic Control Options for z/OS CICS Systems
The diagnostic control options utility enables you to alter the diagnostic action
options taken for a given transaction code that is assigned to a generated CICS
program. If multiple transaction codes are assigned to a program, each transaction
code is specified independently to the diagnostic control options utility.

You can also specify a default action to take place for transactions that are not
explicitly defined to the diagnostic control options utility.

To gain access to the diagnostic control options utility, do the following:

ELAU Rational COBOL Runtime
Diagnostic Message Printing

Fill in the appropriate fields; then press Enter.

Error destination queue name.......ELAD

JES Spool File Information

Node...................... *
Userid.................... *
Class.....................A

Clear destination queue............Y Y=Yes, N=No

ENTER F1=HELP F3=EXIT

Figure 24. Diagnostic Message Printing panel

Chapter 16. Using Rational COBOL Runtime Utilities for z/OS CICS Systems 125

1. Select option 3, Diagnostic Control Options, from the CICS Utilities Menu
(Figure 22 on page 121).

2. Press Enter. The Diagnostic Control Options panel (Figure 25) is displayed.

Note: You can also gain access to the diagnostic control options utility by doing
the following:
1. Type ELAC on a clear screen.
2. Press Enter. When ELAC is started, a copyright panel is displayed.
3. Press Enter. The Diagnostic Control Options panel (Figure 25) is

displayed.

You can access the following functions from the Diagnostic Control Options panel:

Change or View the Diagnostic Control Options for a Transaction
This option enables you to change or view the diagnostic options for a
specific transaction code.

Change or View the Default Diagnostic Control Options
This option enables you to change or view the installation default
diagnostic options.

This affects transaction codes that are not specifically identified to the
diagnostic controller.

Change or View Diagnostic Control Options for a Transaction
This function enables you to change the Rational COBOL Runtime error diagnostic
and control options in effect for a specific CICS transaction.

To start the function do the following:
1. Select option 1, Change or View the Diagnostic Control Options for a

Transaction, from the Diagnostic Control Options panel (Figure 25).
2. Press Enter. The Change or View Diagnostic Control Options for a Transaction

panel (Figure 26 on page 127) is displayed.

ELAC01 Rational COBOL Runtime
Diagnostic Control Options

Select one of the following actions; then press Enter.

Action...............1
1. Change or View the Diagnostic Control Options for a Transaction
2. Change or View the Default Diagnostic Control Options

ENTER F1=HELP F3=EXIT

Figure 25. Diagnostic Control Options panel

126 IBM Rational COBOL Runtime Guide for zSeries

The following fields can be entered on the Change or View Diagnostic Control
Options for a Transaction panel :

Transaction ID
Specifies the 1 to 4 character identifier of the transaction you want to
change the diagnostic options for

Diagnostic Control Options

Transaction ABEND Dump
Specifies the type of dump taken on a CICS transaction ABEND

The types of dumps are:
1. No Dump
2. Complete CICS dump
3. Task dump

Runtime Error Dump
Specifies the type of dump taken on a Rational COBOL
Runtime-detected error for which a dump is indicated in the error
message explanation

The types of dumps are:
1. No Dump
2. Complete CICS dump
3. Task dump

Error Destination Queue Name
Specifies the 1 to 4 character name of a transient data queue to
which Rational COBOL Runtime error diagnostic messages are
written whenever a transaction ends abnormally due to an error

If this field is blank, no messages are written to a queue.

Journal Number
Specifies the journal number of the CICS journal to which error
diagnostic messages are written whenever a transaction is not
successful due to an error

If this field is blank, no journal messages are written.

ELAC02 Rational COBOL Runtime
Change or View Diagnostic Control Options for a Transaction

Fill in the appropriate fields; then press Enter.

Transaction ID.................... ___

Diagnostic Control Options
Transaction ABEND Dump _ 1. No Dump

2. Complete CICS dump
3. Task dump

Runtime Error Dump _ 1. No Dump
2. Complete CICS dump
3. Task dump

Error Destination Queue Name... ___
Journal Number................. __ blank,00-99
Journal Record Identifier...... __
Disable on Run Unit Failure.... _ Y=Yes, N=No

Action............................ 3
1. Change diagnostic control options
2. Use default control options
3. View diagnostic control options

ENTER F1=HELP F3=EXIT

Figure 26. Change or View Diagnostic Control Options for a Transaction panel

Chapter 16. Using Rational COBOL Runtime Utilities for z/OS CICS Systems 127

Journal Record Identifier
Specifies the 1 to 2 character record identifier used when messages
are written to the CICS journal

If this field is blank, the default identifier EZ is used.

Disable on Run Unit Failure
Specifies whether a transaction is disabled whenever an error is
detected that is likely to occur each time the transaction is run

Y Specifies that the transaction is disabled when these errors are
detected

N Specifies that the transaction is not be disabled

Action
Allows you to change the current options, view the current options, or
accept the default options

To change the options currently set for a transaction do the following:
1. Specify the transaction identifier and any changes.
2. Select 1, Change diagnostic control options.
3. Press Enter.

To use the installation defaults for the transaction do the following:
1. Type the transaction identifier.
2. Select 2, Use default control options.
3. Press Enter.

To view the options currently set for a transaction do the following:
1. Type the transaction identifier.
2. Select 3, View diagnostic control options.
3. Press Enter.

Change or View Default Diagnostic Control Options
This function enables you to change or view the default diagnostic options for
transactions that are not identified to the diagnostic controller. If your default
options were not modified at installation, the default diagnostic options are set as
follows:
v Transaction ABEND and runtime errors both cause a task dump.
v The error destination queue name is ELAD.
v Diagnostic messages are not written to a CICS journal data set.
v Transactions are not disabled on a run unit error.

To start this function do the following:
1. Select 2, Change or View the Default Diagnostic Control Options, from the

Diagnostic Control Options panel (Figure 25 on page 126).
2. Press Enter. The Change or View Default Diagnostic Control Options panel is

displayed:

128 IBM Rational COBOL Runtime Guide for zSeries

The options on this panel are the same as those defined for changing or viewing
the diagnostic control options for a transaction. They are all defined following
Figure 26 on page 127.

Using the Parameter Group Utility for z/OS CICS Systems
Use the parameter group utility to create and maintain the parameter groups in the
parameter group file. Each group contains parameters for controlling terminal
printer utility (FZETPRT) transactions.

See “Special Parameter Group for the FZETPRT Program” on page 36 for a
description of the startup parameters that can be included in the parameter group
used with the FZETPRT program.

You can use the parameter group utility to perform the following operations:
v Display the contents of existing parameter groups
v View a list of existing parameter group names
v Add a new parameter group
v Change a parameter group
v Delete a parameter group

Table 21 on page 130 shows the steps used to define a parameter group file.

ELAC04 Rational COBOL Runtime
Change or View Default Diagnostic Control Options

Fill in the appropriate fields; then press Enter.

Default Diagnostic Control Options

Transaction ABEND Dump 3 1. No Dump
2. Complete CICS dump
3. Task dump

Runtime Error Dump 3 1. No Dump
2. Complete CICS dump
3. Task dump

Error Destination Queue Name... ELAD
Journal Number................. __ blank,00-99
Journal Record Identifier...... EZ
Disable on Run Unit Failure.... N Y=Yes, N=No

ENTER F1=HELP F3=EXIT

Figure 27. Change or View Default Diagnostic Control Options

Chapter 16. Using Rational COBOL Runtime Utilities for z/OS CICS Systems 129

Table 21. Defining Parameter Group Files for z/OS CICS

Procedure

1. Define the parameter group file using the IDCAMS utility.

DEFINE CLUSTER (NAME(PARM.GROUP.FILE)-
RECORDS(100 100) KEYS(16 0) RECORDSIZE(272 272) INDEXED)

2. Initialize the parameter group file by using the IDCAMS REPRO function to insert a
dummy record into the file.

3. Specify the FCT for the parameter group file utility to have access to a user-defined
message file for CICS.

DFHFCT TYPE=DATASET, C
DATASET=EZEPRMG, C
ACCMETH=VSAM, C
SERVREQ=(READ,UPDATE,ADD,DELETE,BROWSE), C
FILESTAT=(ENABLED,CLOSED), C
RECFORM=FIXED C

4. Allocate the file by adding the following statement to the z/OS CICS startup JCL:

//EZEPRMG DD DISP=SHR,DSN=PARM.GROUP.FILE

Note: The name that designates the parameter group file (EZEPRMG) is a reserved file
name and cannot be used as a data file by an EGL-generated program.

When the file has been created and allocated, you can access the parameter group
utility by doing the following:
1. Log on to CICS.
2. Type ELAP on a clear screen.
3. Press Enter.

The parameter group utility does not give message-specific tutorial help after a
message is displayed and PF1 is pressed.

After the parameter group utility has been started, the Parameter Group
Specification panel (Figure 28) is displayed. You can specify the parameter group
name on this panel.

130 IBM Rational COBOL Runtime Guide for zSeries

The parameter group name can be from 1 to 4 alphanumeric characters and must
be the name of the transaction that was used to start the FZETPRT program. (The
utility does not verify this.)

You can enter a group name that already exists if you want to modify a parameter
group, or you can enter one that does not exist if you want to define a new
parameter group.

Entering a question mark (?) as the group name on the Parameter Group
Specification panel displays a list of previously-defined group names on the next
panel, the Parameter Group List Display panel (Figure 29). Entering some
characters followed by an asterisk (*) displays a list of parameter group names that
begin with the characters that you entered. Entering a specific parameter group
name displays the Parameter Group Definition panel (Figure 30 on page 132).

PRGM00 PARAMETER GROUP UTILITY

ENTER = Continue PF1 = Help PF3 = Exit

........................ PARAMETER GROUP SPECIFICATION

Specify Parameter Group Name =>

Figure 28. Parameter Group Specification panel

Chapter 16. Using Rational COBOL Runtime Utilities for z/OS CICS Systems 131

From the Parameter Group List Display panel, you can select a group name to edit
by typing an S in the selection field to the left of the group name. You can delete a
group by typing a D in the selection field to the left of the group name.

If the specified parameter group already exists, its contents are displayed on the
Parameter Group Definition panel. The parameter group can be altered. If the
specified parameter group does not exist, the Parameter Group Definition panel is
displayed without any data. You can define the new contents; up to 256 characters
of data can be entered for a parameter group.

The parameter group utility does not validate or format the parameters that are
specified on the Parameter Group Definition panel. Any parameters that are not

PRGM01 PARAMETER GROUP UTILITY

ENTER = Continue PF3 = Exit PF4 = Refresh PF1 = Help
PF7 = Back PF8 = Forward

....................... PARAMETER GROUP LIST DISPLAY

____ PRIN ____ USRQ

Figure 29. Parameter Group List Display panel

PRGM02 PARAMETER GROUP UTILITY

PA2 = Cancel PF1 = Help PF3 = File and Exit
Parameter Group = CCCCCCCC

...........................PARAMETER GROUP DEFINITION..........................

Parameter Group:

=>PRTBUF=2048 PRTMPP=132 PRTTYP=D FORMFD=NO

Figure 30. Parameter Group Definition panel

132 IBM Rational COBOL Runtime Guide for zSeries

valid are ignored when the FZETPRT program is started. For more information
about setting the parameters for terminal printing, see “Special Parameter Group
for the FZETPRT Program” on page 36.

If you press PF3 on the Parameter Group Definition panel without entering any
parameters, a parameter group is stored without any associated parameters. You
can store an empty parameter group to reserve parameter group names.

Empty parameter groups do not affect the initialization of the FZETPRT program.

The parameter group utility left-justifies the parameter group name and pads it to
the right with blanks (X'40'). The parameter group utility uses this name as a key
to index the parameter group file.

If you selected a parameter group from the Parameter Group List Display panel
(Figure 29 on page 132), after the Parameter Group Definition panel is processed,
the Parameter Group List Display panel is displayed again with the original
request replaced by an asterisk beside the group name that was processed. An
asterisk (*) is ignored as input on the Parameter Group Definition panel if more
processing is done.

Chapter 16. Using Rational COBOL Runtime Utilities for z/OS CICS Systems 133

134 IBM Rational COBOL Runtime Guide for zSeries

Chapter 17. Using Rational COBOL Runtime Utilities for IMS
Systems

Rational COBOL Runtime provides a utility in IMS to print diagnostic information.

IMS Diagnostic Message Print Utility
When a generated program ends abnormally due to an error condition in IMS
environments, diagnostic error messages are written to the message queue
identified by the errorDestination build descriptor option for the first program in
the run unit.

An IMS BMP program is provided to print the messages in the message queue.
The JCL needed to print the diagnostic information is supplied as member
ELAMQJUD of ELA.V6R0M1;.ELAJCL (see Figure 31).

The message queue identified by the IN parameter is the name of the queue that
was specified for errorDestination when the program was generated. The default
name is ELADIAG.

//**00000100
//** ELAMQJUD - JCL TO DRAIN AND PRINT THE ELADIAG MESSAGE QUEUE 00000200
//** FOR IBM RATIONAL COBOL RUNTIME. 00000300
//** THIS PROGRAM RUNS AS A BMP. 00000400
//** 00000500
//** LICENSED MATERIALS - PROPERTY OF IBM 00000600
//** 5655-R29 (C) COPYRIGHT IBM CORP. 2000, 2006 00000700
//** SEE COPYRIGHT INSTRUCTIONS 00000800
//** 00000900
//** STATUS = VERSION 6, RELEASE 0, LEVEL 1 00001000
//** 00001100
//** TO TAILOR THIS JOBSTREAM: 00001200
//** 1. COPY A JOBCARD. 00001300
//** 2. CHANGE IN= TO THE NAME OF YOUR ERROR DIAGNOSTIC 00001400
//** QUEUE. 00001500
//** 3. MAKE SURE THAT THE TRANSACTION SPECIFIED BY IN= 00001600
//** AND THE ELAMPUTL PROGRAM ARE STARTED BY IMS. 00001700
//** 00001800
//** RETURN CODES 00001900
//** 0 - SUCCESSFUL COMPLETION 00002000
//** 4 - NO MESSAGES ON QUEUE TO DRAIN. 00002100
//** 16 - FATAL ERROR. PROCESSING TERMINATED 00002200
//** 20 - OPEN FAILED ON ELAPRINT 00002300
//** 00002400
//**00002500
//DRAINMQ EXEC IMSBATCH,MBR=ELAEPUTL, 00002600
// PSB=ELAMPUTL,IN=ELADIAG,RGN=4096K 00002700
//G.STEPLIB DD 00002800
// DD 00002900
// DD DSN=CEE.SCEERUN,DISP=SHR 00003000
// DD DSN=ELA.V6R0M1;.SELALMD,DISP=SHR 00003100
//G.ELAPRINT DD SYSOUT=* 00003200
//G.SYSOUT DD SYSOUT=* 00003300
//G.SYSPRINT DD SYSOUT=* 00003400
/* 00003500

Figure 31. ELAMQJUD

© Copyright IBM Corp. 1994, 2012 135

136 IBM Rational COBOL Runtime Guide for zSeries

Part 5. Diagnosing Problems

Chapter 18. Diagnosing Problems for Rational
COBOL Runtime on z/OS Systems 139
Detecting Errors 139
Reporting Errors 139

Controlling Error Reporting 140
Controlling Error Reporting in CICS. . . . 140
Controlling Error Reporting in IMS
Environments 140
Controlling Error Reporting in z/OS Batch 141

Error Reporting Summary 141
Transaction Error 141
Run Unit Error 142
Catastrophic error 143
Rational COBOL Runtime Error 144

Using the Rational COBOL Runtime Error Panel 144
Printing Diagnostic Information for IMS 145

errorDestination Message Queue 145
IMS Log Format 146
Running the Diagnostic Print Utility. 147

Printing Diagnostic Information for CICS 147
CICS Diagnostic Message Layout 147
Running the Diagnostic Print Utility. 148

Analyzing Errors Detected while Running a
Program 148

Chapter 19. Finding Information in Dumps. . . 151
Rational COBOL Runtime ABEND Dumps . . . 151
COBOL or Subsystem ABEND Dumps 151
Information in the Rational COBOL Runtime
Control Block 152
Information in a Program, Print Services, or
DataTable Profile Block 152
How to Find the Current Position in a Program at
Time of Error 153

Chapter 20. Rational COBOL Runtime Trace
Facility 155
Enabling EGL Program Source-Level Tracing with
Build Descriptor Options 155
Activating a Trace 156

Activating a Trace Session for CICS or IMS/VS 156
Activating a Trace Session for z/OS Batch or
IMS BMP. 159

Deactivating a Trace Session 161
Printing Trace Output 161

Printing the Trace Output in CICS 161
Printing the Trace Output in IMS/VS 161
Printing the Trace Output in z/OS Batch or IMS
BMP 161

Reporting Problems for Rational COBOL Runtime 161

Chapter 21. Common Messages during
Preparation for z/OS Systems 163
Common Abend Codes during Preparation . . . 163
MFS Generation Messages 163

DB2 Precompiler and Bind Messages 164
COBOL Compilation Messages 164

Chapter 22. Common System Error Codes for
z/OS Systems 167
Common Error Codes 167

System Error Code Formats for
sysVar.errorCode 167
Common System Error Codes in
sysVar.errorCode 170
EGL Error Codes 171

Common SQL Codes 178
Common DL/I Status Codes 180
Common VSAM Status Codes 181

OPEN request type 181
CLOSE request type 181
GET/PUT/POINT/ERASE/CHECK/ENDREQ
request types 182

COBOL Status Key Values 182

Chapter 23. Rational COBOL Runtime Return
Codes, Abend Codes, and Exception Codes . . 185
Return Codes 185
ABEND Codes 185

CICS Environments 185
IMS, IMS BMP, and z/OS Batch Environments 187
Exception Codes 188

Chapter 24. Codes from Other Products for
z/OS Systems 191
Common System Abend Codes for All
Environments 191
LE Runtime Messages 192
Common COBOL Abend Codes 193
Common IMS Runtime Messages. 193
Common IMS Runtime Abend Codes 194
Common CICS Runtime Messages 195
Common CICS Abend Codes 195
COBOL Abends under CICS 196

© Copyright IBM Corp. 1994, 2012 137

138 IBM Rational COBOL Runtime Guide for zSeries

Chapter 18. Diagnosing Problems for Rational COBOL
Runtime on z/OS Systems

The chapter contains diagnosis, modification, or tuning information. Use this
information to determine the source of the problem you encountered. Some
common program definition, database, and system errors that might cause
problems are described. This chapter also explains how to obtain error listings and
diagnose runtime errors.

Detecting Errors
You can find most logic errors by using the EGL debugger before you generate
your program.

During generation, a validation step checks your program for any remaining
syntax errors. In addition, validation also checks that your use of language
elements is consistent with both the runtime environment and the resource
association information you select for each file. For example, the sysLib.purge()
system function is only valid in a CICS environment.

When you run your generated program, different types of errors are detected by
Rational COBOL Runtime, COBOL, the subsystem (IMS or CICS), or z/OS. The
error handling varies depending on which product detects the error, the type of
error, and the runtime environment.

For diagnostic information of interest at development time, refer to the EGL online
help system. For information about how to control the error reporting at runtime,
see “Controlling Error Reporting” on page 140. For information about how the
various types of errors are reported in the runtime environments, see “Error
Reporting Summary” on page 141.

For those errors detected by Rational COBOL Runtime that result in a Run Unit
Error, the processing varies based on the runtime environment:
v Error messages for CICS are written to the transient data queue specified

through the diagnostic control options. You can print those messages by using
the diagnostic printing utility (see “Diagnostic Message Printing Utility” on page
124) or by using CICS utilities (for example, CEBR). For more information, see
“Diagnostic Control Options for z/OS CICS Systems” on page 125.

v Error messages for IMS/VS are written to the IMS message queue identified by
the errorDestination build descriptor option. You can print those messages by
using the diagnostic printing utility (see “IMS Diagnostic Message Print Utility”
on page 135).

Reporting Errors
Rational COBOL Runtime provides functions that help you determine the cause of
a runtime problem. All runtime errors that Rational COBOL Runtime traps are
accompanied by error messages and supporting information to help diagnose the
problem. Table 22 on page 141 through Table 25 on page 144 show the error
diagnostic actions that can be taken based on the severity of the error and the
runtime environment.

© Copyright IBM Corp. 1994, 2012 139

Controlling Error Reporting
Controlling error reporting requires different actions in CICS, IMS, and z/OS batch
environments.

Controlling Error Reporting in CICS
In the CICS environment, error actions are controlled through the online diagnostic
controller utility installed as transaction ELAC.

The utility allows you to specify what type of dump is requested, the name of the
transient data queue to which Rational COBOL Runtime diagnostic messages are
written, the CICS journal number and identifier for error messages, and whether or
not a transaction is disabled when a run unit error is detected. The utility lets you
reset the default options for all transactions and override the default options for
individual transactions.

See “Diagnostic Control Options for z/OS CICS Systems” on page 125 for more
details about the diagnostic controller utility.

Controlling Error Reporting in IMS Environments
The following error responses are controlled by build descriptor options for the
IMS/VS and IMS BMP environments:
v Write error messages to the error destination message queue. The destination is

determined by the errorDestination build descriptor option.
v Write error messages to the system log. The log ID is determined by the

imsLogID build descriptor option. If the imsLogID option does not appear in
the build descriptor file, error messages will not be written to the system log.

v Put the message that caused the problem for transaction-oriented IMS BMP
programs back on the message queue. restoreCurrentMsgOnError=YES
indicates that the message being processed when the error occurred should be
placed back on the message queue before the program ends.
restoreCurrentMsgOnError=NO indicates that the message being processed
should be deleted and not placed back on the message queue. This option is
applicable only to a run unit error when Rational COBOL Runtime detects the
error. It does not apply to transaction-oriented BMPs that use VGLib.VGTDLI(),
dliLib.AIBTDLI(), or dliLib.EGLTDLI() to read the message queue.

v Issue ROLL call or abend for a run unit error. imsFastPath=NO results in a
ROLL call. imsFastPath=YES results in a 1602 abend.

The actions controlled by the runtime JCL are as follows:
v Print message. This is done only if there is an ELAPRINT DD statement in the

runtime JCL.
v Snap dump. If the message indicates a snap dump is taken, the snap dump is

produced only if there is an ELASNAP DD statement in the runtime JCL.
v Abend 1602 or 1600. This creates a dump only if the runtime JCL contains a

SYSUDUMP or SYSABEND DD statement.
Abend code 1602 is the user code issued by Rational COBOL Runtime when it
ends the run unit for an imsFastPath="YES" program because of an error.
Abend code 1600 is the user code issued by Rational COBOL Runtime in all
other situations when it ends program processing because of an unrecoverable
error.

IMS takes the following actions, based on the way Rational COBOL Runtime ends
the program:

140 IBM Rational COBOL Runtime Guide for zSeries

v If a rollback (ROLB) call is issued, the database changes are backed out, the
logical unit of work ends, the next message is read from the message queue, and
processing continues.

v If a ROLL call is issued, the database changes are backed out, the logical unit of
work ends, and IMS stops the program with a user 778 abend. The transaction
and PSB are not stopped and can be scheduled again without operator
intervention.

v If either a 1600 or a 1602 abend is issued, the database changes are backed out,
the logical unit of work ends, and IMS stops the program. The transaction and
PSB are also stopped, and they require operator intervention to start them again.

Use ELASNAP so that sufficient data is captured the first time an error occurs.

Controlling Error Reporting in z/OS Batch
The actions controlled by the runtime JCL are as follows:
v Print message. This is done only if there is an ELAPRINT DD statement in the

runtime JCL.
v Snap dump. If the message indicates a snap dump is taken, the snap dump is

produced only if there is an ELASNAP DD statement in the runtime JCL.
v Abend 1600. This creates a dump only if the runtime JCL contains a SYSUDUMP

or SYSABEND DD statement.

Error Reporting Summary
The following tables summarize the error processing actions for Rational COBOL
Runtime.

Transaction Error
This error affects only the current CICS task or current IMS/VS transaction. In
CICS, the transaction is still available to other end users. In IMS/VS, processing
continues with the next message.

Table 22. Error Processing Actions For Rational COBOL Runtime Detected Errors

Environment Action

CICS v Write error messages to error destination (diagnostic controller option)
v Write error messages to CICS journal data set (diagnostic controller

option)
v CICS dump, dump code ELAD, as determined by message. The type of

dump issued for a particular transaction is a diagnostic control option.
v Issue a rollback request
v Display error messages on terminal, if possible
v Set return code to 693 (called programs only)

IMS BMP See run unit error

IMS/VS
(Initial
generated
program is a
main or called
basic program)

See run unit error

Chapter 18. Diagnosing Problems for Rational COBOL Runtime on z/OS Systems 141

Table 22. Error Processing Actions For Rational COBOL Runtime Detected
Errors (continued)

Environment Action

IMS/VS
(Initial
generated
program is a
main Text UI
program)

v Write error messages to error destination (errorDestination build
descriptor option)

v Write error messages to system log (imsLogID build descriptor option)

v Print messages (ELAPRINT DD statement)

v Snap dump determined by the message (ELASNAP DD statement)

v Display error messages on current LTERM

v Issue a rollback (ROLB) request

v Read next message from the queue

z/OS batch See run unit error

Run Unit Error
The error is likely to occur for every user. In CICS, the transaction might be
disabled. In IMS/VS, a new copy of the program is used if there are additional
messages on the queue.

Table 23. Error Processing Actions For Rational COBOL Runtime Detected Errors

Environment Action

CICS v Write error messages to error destination (diagnostic control option), if
possible

v Write error messages to CICS journal data set (diagnostic control option),
if possible

v Disable transaction (diagnostic control option)
v CICS dump, dump code ELAD, as determined by message. The type of

dump issued for a particular transaction is a diagnostic control option.
v Issue a rollback request
v Display error messages on terminal, if possible
v Set return code to 693 (called programs only)
v Return

IMS BMP v Write error messages to error destination (errorDestination build
descriptor option)

v Write error messages to system log (imsLogID build descriptor option)

v Print messages (ELAPRINT DD statement)

v Snap dump determined by the message (ELASNAP DD statement)

v Issue a rollback (ROLB) request

v Insert message segment or segments into the queue again
(restoreCurrentMsgOnError build descriptor option set to YES)

v Set return code to 693

v Return

IMS/VS
(Initial
generated
program is a
main or called
basic program)

v Write error messages to error destination (errorDestination build
descriptor option), if possible

v Write error messages to system log (imsLogID build descriptor option), if
possible

v Print messages (ELAPRINT DD statement), if possible

v Snap dump determined by the message (ELASNAP DD statement)

v Issue ROLL request if generated with build descriptor imsFastPath="NO"

v Abend 1602 if generated with build descriptor imsFastPath="YES"

142 IBM Rational COBOL Runtime Guide for zSeries

Table 23. Error Processing Actions For Rational COBOL Runtime Detected
Errors (continued)

Environment Action

IMS/VS
(Initial
generated
program is a
main Text UI
program)

v Write error messages to error destination (errorDestination build
descriptor option), if possible

v Write error messages to system log (imsLogID build descriptor option), if
possible

v Print messages (ELAPRINT DD statement), if possible

v Snap dump determined by the message (ELASNAP DD statement)

v Display error messages on current LTERM

v Issue ROLL request if generated with build descriptor imsFastPath="NO"

v Abend 1602 if generated with build descriptor imsFastPath="YES"

z/OS batch v Print message (ELAPRINT DD statement)
v Snap dump determined by the message (ELASNAP DD statement)
v Issue a rollback request if DL/I or DB2 databases were used
v Set return code to 693
v Return

Catastrophic error
This error indicates storage is corrupted or standard error reporting processing
ends abnormally.

Table 24. Error Processing Actions For Rational COBOL Runtime Detected Errors

Environment Action

CICS v Write error messages to error destination (diagnostic control option), if
possible

v Write error messages to CICS journal data set (diagnostic control option),
if possible

v Disable transaction (diagnostic control option)
v Display error messages on terminal, if possible
v ABEND ELAE. The type of dump issued for a particular transaction is a

diagnostic control option.

IMS BMP v Write error messages to error destination (errorDestination build
descriptor option), if possible

v Write error messages to system log (imsLogID build descriptor option), if
possible

v Print messages (ELAPRINT DD statement), if possible

v Issue a rollback (ROLB) request

v Abend 1600 (SYSUDUMP or SYSABEND DD statement)

IMS/VS
(Initial
generated
program is a
main or called
basic program)

v Write error messages to error destination (errorDestination build
descriptor option), if possible

v Write error messages to system log (imsLogID build descriptor option), if
possible

v Print messages (ELAPRINT DD statement), if possible

v Abend 1600 (SYSUDUMP or SYSABEND DD statement)

Chapter 18. Diagnosing Problems for Rational COBOL Runtime on z/OS Systems 143

Table 24. Error Processing Actions For Rational COBOL Runtime Detected
Errors (continued)

Environment Action

IMS/VS
(Initial
generated
program is a
main Text UI
program)

v Write error messages to error destination (errorDestination build
descriptor option), if possible

v Write error messages to system log (imsLogID build descriptor option), if
possible

v Print messages (ELAPRINT DD statement), if possible

v Display error messages on current LTERM, if possible

v Abend 1600 (SYSUDUMP or SYSABEND DD statement)

z/OS batch v Print messages (ELAPRINT DD statement), if possible
v Abend 1600 (SYSUDUMP or SYSABEND, DD statement)

Rational COBOL Runtime Error
A Rational COBOL Runtime error occurs at a point where the standard error
reporting process is not active.

Table 25. Error Processing Actions For Rational COBOL Runtime Detected Errors

Environment Action

All
environments

v Abend, ABEND code indicates the reason for the error

See Table 29 on page 151 for information concerning the contents of the registers
when either a 1600, 1602, or an ELAE abend occurs.

Using the Rational COBOL Runtime Error Panel
When an error occurs, Rational COBOL Runtime attempts to display error
messages on the current terminal. The panels used in displaying error messages
are defined as FormGroup ELAxxx where xxx is the language code.

The following figure shows the error panel (form ELAM02 in the FormGroup) as it
is shipped with the product. The panel shows the same diagnostic information that
is written to the error destination queue, system log or journal, or ELAPRINT file.
If there are more error messages than can fit on a single panel, the last line on the
panel prompts the user to press a key to display additional error messages.

144 IBM Rational COBOL Runtime Guide for zSeries

Printing Diagnostic Information for IMS
Diagnostic messages are sent either to a print file for batch jobs or to a message
queue for IMS BMPs or online transactions. A diagnostic utility is provided to
print messages written to a message queue. Optionally, based on the imsLogID
build descriptor option, the diagnostic information can be written to the IMS log.

errorDestination Message Queue
Table 26 shows the format of the information in the IMS message queue when the
errorDestination build descriptor option is used. The default queue name is
ELADIAG.

Table 26. errorDestination IMS Message Queue

Field Length in Bytes
Type of
Data Description

Record length 2 Binary The length of the record.

Reserved 2 Binary A reserved field that must contain
binary zeros.

IMS transaction code 8 Character The name used to identify the IMS
message queue that was specified
with the errorDestination build
descriptor option.

Date 8 Character Date of the transaction from the I/O
PCB (MM/DD/YY).

Time 8 Character Time of the transaction from the I/O
PCB (HH:MM:SS).

NLS 3 Character The value specified for the
targetNLS build descriptor option

Unexpected Program Failure

An unexpected input/output or program error occurred in the
program you were running. Please make a note of the program
name, date, time, and initial error messages and report them to your
system administrator.

Program name ... ART22
Date 08/21/90
Time 13:04:23

Error Messages:

ELA00093I An error occurred in program ART22, function ART229
ELA00131P MSGQ error, file = UNKNOWN, function = CHG, status code = A1
ELA00066I DL/I I/O area = UNKNOWN

EDDDDED4
45256650

Figure 32. Panel ELAM02 (example).

Chapter 18. Diagnosing Problems for Rational COBOL Runtime on z/OS Systems 145

Table 26. errorDestination IMS Message Queue (continued)

Field Length in Bytes
Type of
Data Description

Message number 9 Character The message number:

Bytes 1-3
Message File Identifier
(ELA)

Byte 4 Application Identifier (0)

Bytes 5-8
Message Number

Byte 9 Message Type. A message
type of 'C' indicates this
record is a continuation of
the specified message from
a previous record in the
queue.

Message number
separator (reserved
position)

1 Character
Byte 10 Blank

Message Text Variable Character The text from the message file with
specified message inserts.

IMS Log Format
Table 27 shows the format of the information in the IMS log.

Table 27. IMS Log Record

Field Length in Bytes
Type of
Data Description

Record length 2 Binary The length of the record.

Reserved 2 Binary A reserved field that must contain
binary zeros.

Log ID 1 Character The value specified with the
imsLogID build descriptor option.

Date 8 Character Date of the transaction from the I/O
PCB (MM/DD/YY).

Time 8 Character Time of the transaction from the I/O
PCB (HH:MM:SS).

NLS 3 Character The value specified for the
targetNLS build descriptor option

146 IBM Rational COBOL Runtime Guide for zSeries

Table 27. IMS Log Record (continued)

Field Length in Bytes
Type of
Data Description

Message number 9 Character The message number:

Bytes 1-3
Message File Identifier
(ELA)

Byte 4 Application Identifier (0)

Bytes 5-8
Message Number

Byte 9 Message Type. A message
type of 'C' indicates this
record is a continuation of
the specified message from
a previous record in the log.

Message number
separator (reserved
position)

1 Character
Byte 10 Blank

Message Text Variable Character The text from the message file with
specified message inserts.

Running the Diagnostic Print Utility
An IMS BMP program is provided to print diagnostic information that is written to
the message queue specified by the errorDestination build descriptor option. The
JCL needed to print the diagnostic information is supplied as member ELAMQJUD
of ELA.V6R0M1;.ELAJCL.

The message queue identified by the IN parameter is the name of the queue that
was specified in the errorDestination option when the application was generated.
See “IMS Diagnostic Message Print Utility” on page 135 for more information.

Printing Diagnostic Information for CICS
Diagnostic messages are sent to a transient data queue for CICS transactions. A
diagnostic print utility is provided to print messages written to a transient data
queue. Optionally, as specified by the diagnostic controller utility, the diagnostic
information can also be written to an CICS journal data set.

CICS Diagnostic Message Layout
Table 28 shows the format of the information in each error message record written
to a transient data queue or CICS journal.

Table 28. Diagnostic Message Layout

Field Length in Bytes
Type of
Data Description

SYSID name 4 Character The name of the CICS system that
the error message was created on.

TRANID name 4 Character The name of the CICS transaction
code that started the logical
unit-of-work.

Chapter 18. Diagnosing Problems for Rational COBOL Runtime on z/OS Systems 147

Table 28. Diagnostic Message Layout (continued)

Field Length in Bytes
Type of
Data Description

Task identifier 8 Character The task identifier assigned by CICS
to each transaction instance that is
processed. This number is reset to 0
when CICS is cold-started. This is
taken from EIB field EIBTASKN.

Error destination
queue ID

4 Character The name of the CICS transient data
queue. This field is blank if the
record is written to the CICS journal.

Date 8 Character Date of the transaction
(MM/DD/YY)

Time 8 Character Time of the transaction (HH:MM:SS)

NLS 3 Character The value specified for the
targetNLS build descriptor option

Message number 9 Character The message number:

Bytes 1-3
Message File Identifier
(ELA)

Byte 4 Application Identifier (0)

Bytes 5-8
Message Number

Byte 9 Message Type. A message
type of 'C' indicates this
record is a continuation of
the specified message from
a previous record in the
queue.

Message number
separator (reserved
position)

1 Character
Byte 10 Blank

Message text 110 Character The text from the message file with
specified message inserts

Running the Diagnostic Print Utility
Use the ELAU transaction to print the messages routed to a transient data queue.
See “Diagnostic Message Printing Utility” on page 124 for more information about
running the CICS diagnostic print utility.

Analyzing Errors Detected while Running a Program
Use the error messages and diagnostic messages to determine the cause of the
problem. If the error is detected by another product (for example, COBOL), check
the information in Chapter 22, “Common System Error Codes for z/OS Systems”
and Chapter 24, “Codes from Other Products for z/OS Systems” and the
documentation for the other product.

If you cannot determine the cause of the problem using this information and if the
problem can be created again in the test environment, use the EGL debugger to
isolate and debug the error before generating the program again.

148 IBM Rational COBOL Runtime Guide for zSeries

For debugging in the runtime environment, you can use the runtime diagnostic
facility (EDF) for CICS programs or the batch terminal simulator (BTS II) for IMS
programs. In addition, if you use the TEST COBOL compile option, you can use
the COBOL debugging facilities.

Refer to the CICS, IMS, and COBOL manuals for your versions of these products
for additional information on their debugging facilities.

If you get a JCL error for the runtime JCL, check the generation output for the
programs involved for any error messages related to JCL generation. In addition,
ensure the tailoring that was done on the runtime JCL templates is correct. Also
check any changes made to customize the sample runtime JCL.

When abends occur, the problem determination might require assistance from the
IBM Support Center. In this case, be prepared to provide IBM with the following
information:
v COBOL source file created using the commentLevel=1 build descriptor option.
v Formatted dump
v Rational COBOL Runtime diagnostic information written to either the error

diagnostic queue or listed in the printout for ELAPRINT
v CICS journal or IMS log, as appropriate

IBM requests a COBOL debugger trace listing only if the information is needed for
problem determination. IBM will give you the information on how to specify the
trace options if the information is necessary.

Chapter 18. Diagnosing Problems for Rational COBOL Runtime on z/OS Systems 149

150 IBM Rational COBOL Runtime Guide for zSeries

Chapter 19. Finding Information in Dumps

Information about the problem program can be determined by finding the address
of the Rational COBOL Runtime control block in a dump.

Rational COBOL Runtime ABEND Dumps
If the dump code is 1600, 1602, or ELAE, the dump was initiated because Rational
COBOL Runtime detected an error. Register 2 at ABEND points to the Rational
COBOL Runtime control block. Register 4 points to a linked list of messages
formatted as shown in Figure 33.

Table 29. Registers when a SNAP dump is taken or a Rational COBOL Runtime ABEND
occurs.

Reg. Value

2 Points to Rational COBOL Runtime control block. At offset 272 (hexadecimal
offset 110) from the start of the Rational COBOL Runtime control block is the
address of the initial program profile block, which provides information about
the first EGL-generated program that was started. At offset 276 (hexadecimal
offset 114) from the start of the Rational COBOL Runtime control block is the
address of the current program profile block, which provides information about
the EGL-generated program that was running at the time of the abend.

4 Points to the message buffer that contains all messages.

The following diagram shows the format of the message buffer that contains all the
messages in the dump.

COBOL or Subsystem ABEND Dumps
If the dump is not a Rational COBOL Runtime abend, you can use the following
method to locate the Rational COBOL Runtime control block:

Figure 33. Message Buffer Format

© Copyright IBM Corp. 1994, 2012 151

v On CICS systems, locate the CICS Task Work Area (TWA) in the dump. Locate
the string *EZERTS-CONTROL* in the TWA. This string is the identifier at the
start of the Rational COBOL Runtime control block. The * and - characters might
be converted to periods in a formatted dump.

v On other systems, locate the string ELARHAPP followed immediately by a
program name. ELARHAPP is the identifier at the start of a program profile
block. The four-byte address at hex offset 20 in the program profile block is the
Rational COBOL Runtime control block address. If 0, the program might not yet
be activated. Do a search for another ELARHAPP control block followed by a
program name.
For information in the program profile control Block, see Table 31.

Information in the Rational COBOL Runtime Control Block
The following information is in the Rational COBOL Runtime control block:

Table 30. Information in the Rational COBOL Runtime Control Block

Offset in hex Length in bytes Contents

0 16 Control block identifier -
EZERTS-CONTROL

104 4 CICS EIB Pointer

110 4 Program profile address for current program

114 4 Program profile address for initial program

118 8 Terminal identifier

120 8 User identifier

128 8 Transaction identifier

150 12 dliLib.psbData

1CC 18 Current function

Information in a Program, Print Services, or DataTable Profile Block
Each generated COBOL program contains a profile control block in COBOL
working storage initialized with information about the program. The first eight
bytes contain an eye-catcher constant identifying whether the program was
generated from a program, FormGroup or DataTable part. The second eight bytes
contain the program name. Other information in the profile block is shown in the
following table:

Table 31. Locator Format for Generated COBOL Program Dumps

Offset in hex Length in hex Contents

00 08 Program type identifier:
ELARHAPP — program, library, service
ELAAHMGC — print services program
ELARMTPP — DataTable program

08 08 Program name

10 08 Program generation date (MM/DD/YY)

18 08 Program generation time (HH:MM:SS)

20 04 Rational COBOL Runtime control block
address

24 02 Generator version

152 IBM Rational COBOL Runtime Guide for zSeries

Table 31. Locator Format for Generated COBOL Program Dumps (continued)

Offset in hex Length in hex Contents

26 02 Generator release

28 02 Generator modification level

2A 10 Reserved

34 08 Target runtime system

How to Find the Current Position in a Program at Time of Error
The Rational COBOL Runtime control block identifies the currently running
program and function at the time of the error (Table 30 on page 152). Associated
error messages identify the EGL statement number for errors detected by Rational
COBOL Runtime that need statement identification to resolve the problem. For
performance reasons, the generated COBOL program does not keep track of the
EGL statement number for each generated statement. If a program exception
occurs in a generated program, you can determine the EGL statement number by
finding the COBOL statement that was not successful in a COBOL program listing
that contains the EGL statements generated as comments.

Chapter 19. Finding Information in Dumps 153

154 IBM Rational COBOL Runtime Guide for zSeries

Chapter 20. Rational COBOL Runtime Trace Facility

The Rational COBOL Runtime trace facility can be used by the IBM Support
Center to aid in problem determination, or by the program user to trace program
activity.

There are two levels of tracing available:
v EGL program source-level tracing
v Rational COBOL Runtime runtime level tracing

With source-level tracing, you can request traces of EGL statements, traces of the
data, and error codes after every SQL call in a program, except SQL calls made
with the execute statement. Source-level tracing is enabled with the use of the
sqlIOTrace, sqlErrorTrace, and statementTrace build descriptor options.
Source-level tracing for the statementTrace build descriptor option is automatically
activated when you generate with statementTrace set to YES and deactivated when
you generate with statementTrace set to NO. You must activate source-level tracing
in the runtime environment for the sqlIOTrace and sqlErrorTrace build descriptor
options by specifying trace filter criteria. See “Activating a Trace” on page 156 for
more information on activating traces.

With runtime-level tracing, you can request a data stream trace, a Rational COBOL
Runtime internal dump trace, or a service routine trace. Runtime-level tracing does
not require the use of a build descriptor option. Runtime-level tracing is activated
in runtime environment by specifying trace filter criteria. See “Activating a Trace”
on page 156 for more information on activating traces.

Use these functions only with the assistance of the IBM Support Center. If you use
these functions without assistance, large amounts of trace output might be
produced based on trace option selection.

Enabling EGL Program Source-Level Tracing with Build Descriptor
Options

You must specify the sqlIOTrace, sqlErrorTrace, and statementTrace build
descriptor options in order to get source-level trace output. EGL generation creates
the necessary COBOL code to accomplish the type of tracing that you request.

The trace build descriptor options are sqlIOTrace, sqlErrorTrace, and
statementTrace. When using these options, you must specify a value of YES or
NO. Each of these build descriptor options tells the COBOL generator whether or
not to generate code to allow runtime tracing of a particular aspect of execution -
SQL I/O, SQL Errors, and EGL statement execution path.

Note: These options are intended for the use of support personnel and should
only be used when a trace is requested as part of a support effort. Normal
application debugging should be done through the use of the EGL
Debugger.

© Copyright IBM Corp. 1994, 2012 155

Activating a Trace
Source-level tracing for the statementTrace build descriptor option is automatically
activated when you generate with statementTrace set to YES and deactivated when
you generate with statementTrace set to NO.

All other tracing is activated during run time either by using the ELAZ transaction
in the CICS or IMS/VS environments, or by specifying the ELATRACE DD name
in the runtime JCL for the z/OS batch or IMS BMP environments.

Activating a Trace Session for CICS or IMS/VS
Rational COBOL Runtime supplies a utility to activate tracing in the CICS or
IMS/VS environments.To start the utility, enter the utility transaction code, ELAZ.
The utility transaction must start prior to running the transaction to be traced.

The ELAZ transaction must run in the same region as the transactions to be traced.
In IMS, a message processing region can be altered to handle a unique class and
the ELAZ transaction and the transactions to be traced set to this class, in order to
ensure that the transactions run in the same region. In CICS, enter the ELAZ
transaction and the transaction to be traced from terminals attached to the same
CICS region.

Figure 34 shows the initial panel for the ELAZ transaction that enables you to
specify which transactions are to be traced. You use a secondary panel to specify
filter criteria for a specific transaction that control what information is traced for
that transaction.

Note: For IMS/VS, specify the name of the initial program instead of the initial
transaction.

Rational COBOL Runtime then presents the panel shown in Figure 35 on page 157
for trace filter selection:.

ELAZ01 Rational COBOL Runtime
Trace Transaction Selection

Specify the transaction you want to trace; then press Enter.

To select specific programs and services for tracing, place the cursor
on a transaction name and press F4.

Transaction codes or initial program names

________ ________ ________ ________

________ ________ ________ ________

________ ________ ________ ________

________ ________ ________ ________

ENTER F1=HELP F3=EXIT F4=FILTER F9=REFRESH F10=STOP TRACE

Figure 34. Rational COBOL Runtime Trace Transaction Selection Panel

156 IBM Rational COBOL Runtime Guide for zSeries

The filter criteria include the following:

3270 Data Stream (Y or N)
Specifies whether to trace 3270 data streams

If yes (Y), the 3270 data streams built or received by EGL are traced. The
default is no (N). For IMS/VS environments, 3270 Data Stream Trace
option is not allowed.

Terminal ID
Specifies a terminal identifier

If specified, only transactions initiated from that terminal are traced. If not
specified, service requests from any terminal are traced.

Trace to File (Y or N)
Specifies whether the trace output goes to a file

If yes (Y), the trace output of Rational COBOL Runtime is sent to the ELAT
transient data queue in CICS and to an IMS/VS message queue for
transaction ELATOUT in IMS/VS. This trace is also written to an
in-storage wrap-around trace buffer.

If no (N), the trace output goes to an in-storage wrap-around trace buffer.
The size of this trace buffer is defined during customization of Rational
COBOL Runtime.

Y must be specified if you specify Y (yes) for the SQL/IO Trace or
SQL/ERR Trace options. All trace output for SQL/IO and error tracing is
sent to a file, not to the in-storage wrap-around trace buffer.

Note: For IMS/VS, you cannot trace to file if the tracing transaction uses
the modifiable express PCB (ELAEXP) because Rational COBOL
Runtime uses this PCB to write to the message queue. Unpredictable
results can occur.

IDUMP Trace (Y or N)
Specifies whether to dump Rational COBOL Runtime internal storage areas

ELAZ02 Rational COBOL Runtime
Trace Filter Selection

Transaction code or Initial Program ________

Fill in the appropriate fields, then press Enter.

3270 Data Stream.......N APP Statement Trace.....N
Terminal ID............_________ SQL/IO Trace............N
Trace to File..........N SQL/ERR Trace...........N
IDUMP Trace............N

FILENAME ELATOUT NODE * USERID EZEUSRID CLASS A FORM *

Programs
________ _________ ______ ______ ______ ________ _____ __ ____
________ _________ ______ ______ ______ ________ _____ __ ____
Services
___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___
___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___

ENTER F1=HELP F3=RETURN F9=REFRESH

Figure 35. Rational COBOL Runtime Trace Filter Selection Panel

Chapter 20. Rational COBOL Runtime Trace Facility 157

If yes (Y), the trace facility provides dumps of certain Rational COBOL
Runtime internal storage areas. The default is no (N), no internal storage
dumps.

APP Statement Trace (Y or N)
This field is ignored for EGL-generated programs; it is only used for
programs that are generated by VisualAge Generator Developer. For more
information, see the VisualAge Generator Server Guide for MVS, VSE, and
VM.

SQL/IO Trace (Y or N)
Specifies whether to trace SQL/IO

If yes (Y), the trace facility provides traces of the data and error codes on
the return from the SQL call. The EGL function name, the I/O statement,
the I/O object, the SQL function name, and the EGL data item name,
length, type, and contents are given. Specify the sqlIOTrace=YES build
descriptor option to enable this type of tracing. The default is no (N).

SQL/ERR Trace (Y or N)
Specifies whether to trace SQL error information

If yes (Y), the trace facility provides traces of the error information that
comes back from SQL on every database call. The SQLCODE, SQLERRP,
SQLSTATE, SQLWARN, SQLERRD, SQLEXT, and SQLERRMC codes are
given. Specify sqlErrorTrace="YES" to enable this type of tracing. The
default is no (N).

FILENAME
The system resource name for the trace output. The default is ELATOUT.

NODE
1 to 8 characters that specify the system node ID. The default is the current
system node ID.

USERID
1 to 8 characters that specify the user ID. The default is the value of the
EZEUSRID sysVar.userID system variable special function word.

CLASS
A single character that specifies the print class. The default is A.

FORM
1 to 4 characters that specify the form number for print output. The default
is your location's standard form.

Programs
Specifies whether to limit the trace to certain programs or print services
programs

If specified, only the requested programs are traced.

Services
Specifies whether to limit the trace to certain Rational COBOL Runtime
services

If specified, only the requested services are traced. Otherwise all service
numbers are traced if the other criteria are met.

Note: The entry to ELARSINI (initialization service) and the exit from
ELARSTRM (cleanup service) are not traced. ELARSINI initializes
the trace facility. ELARSTRM ends the trace facility.

158 IBM Rational COBOL Runtime Guide for zSeries

If you are running a trace to aid in problem determination, enter the filter criteria
as directed by the IBM support center.

Activating a Trace Session for z/OS Batch or IMS BMP
Tracing is activated by providing trace filters in a preallocated data set with the
DD name ELATRACE before starting the program or job to be traced. ELATRACE
contains control statements which control the programs and events to be traced.
The attributes for the data set are LRECL=80, DSORG=PS, and RECFM=FB. If the
ELATRACE data set is empty or allocated as DD DUMMY, all services are traced,
data streams are not traced, and SQL I/O and SQL errors are not traced even if
enabled through sqlIOTrace or sqlErrorTrace build descriptor options. Figure 36
shows the correct syntax for the trace control statements.

Notes:

1. Only one program name or service number can be entered on each line.
2. The :FILTER and :EFILTER tags are required if any other tags are included in

the ELATRACE data set.
3. More than one filter can be specified on a line. The filters must be separated by

0 or more blanks. The example below shows sample :FILTER statements that
are valid and equivalent:
:FILTER DATASTREAM=Y
:FILTER SQLERR=Y

:FILTER DATASTREAM=YSQLERR=Y

:FILTER DATASTREAM=Y SQLERR=Y

:FILTER DATASTREAM=Y SQLERR=Y

The filters cannot be continued on the next line. The statement shown below is
not valid:

:FILTER DATASTREAM=Y SQLERR=
Y

The control card tags and attributes that control filtering have the following
meaning:

:FILTER DATASTREAM=Y|N
:FILTER TRACETOFILE=Y|N
:FILTER APPSTMT=Y|N
:FILTER SQLIO=Y|N
:FILTER SQLERR=Y|N
:FILTER IDUMP=Y|N
:APPLS

...
[name]

...
:EAPPLS
:SERVICES

...
[service number]

...
:ESERVICES
:EFILTER

Figure 36. ELATRACE Data Set Entries

Chapter 20. Rational COBOL Runtime Trace Facility 159

:FILTER Options controlling what information is traced and where trace
data is written

The following attributes can be used with the :FILTER statement:
v DATASTREAM=Y|N

If DATASTREAM=Y is specified, the 3270 data streams built or
received by Rational COBOL Runtime are traced. The default
value is N, no data stream tracing.

v TRACETOFILE=Y|N
If TRACETOFILE=Y is specified, the trace output is directed to
the preallocated data set named ELATOUT in addition to being
directed to an in-storage wrap-around trace buffer.
If TRACETOFILE=N is specified, the trace output goes to an
in-storage wrap-around trace buffer. The size of this trace buffer
is defined during customization of Rational COBOL Runtime.
The default for the TRACETOFILE option is N.
TRACETOFILE=Y must be specified if SQLIO=Y or SQLERR=Y
are specified. All trace output for SQL I/O and SQL errors is
directed to the ELATOUT data set, not to the in-storage
wrap-around trace buffer.

v APPSTMT=Y|N
This field is ignored for EGL-generated programs; it is only used
for programs that are generated by VisualAge Generator
Developer. For more information, see the VisualAge Generator
Server Guide for MVS, VSE, and VM.

v SQLIO=Y|N
If SQLIO=Y is specified, the trace facility provides traces of the
data and error codes on the return from the SQL call. The EGL
function name, the I/O statement, the I/O object, the SQL
function name, and the EGL data item name, length, type, and
contents are given. You must use the sqlIOTrace="YES" build
descriptor option to enable this type of tracing. The default for
the SQLIO option is N.

v SQLERR=Y|N
If SQLERR=Y is specified, the trace facility provides traces of the
error information that comes back from SQL on every database
call. The SQLCODE, SQLERRP, SQLSTATE, SQLWARN,
SQLERRD, SQLEXT, and SQLERRMC codes are given. You must
use the sqlErrorTrace="YES" build descriptor option to enable
this type of tracing. The default for the SQLERR option is N.

v IDUMP=Y|N
If IDUMP=Y is specified, the trace facility provides dumps of
certain Rational COBOL Runtime internal storage areas. The
default for the IDUMP option is N, no internal storage dumps.

:APPLS Program names or print service program names

If program names are specified, only the specified programs are
traced. Otherwise service requests from each generated program
are traced. Up to 16 program names can be specified.

:SERVICES Service numbers

160 IBM Rational COBOL Runtime Guide for zSeries

If service numbers are specified, only those specific services are
traced. To trace all service numbers, 999 must be specified.
Otherwise, up to 32 service numbers can be specified.

Note: The entry to ELARSINI (initialization service) and the exit
from ELARSTRM (cleanup service) are not traced.
ELARSINI initializes the trace facility. ELARSTRM ends the
trace facility.

Deactivating a Trace Session
To stop all trace activity for CICS or IMS/VS, use the ELAZ transaction to delete
the transaction codes from the list of transactions to be traced by using the F10
function key. When a transaction ends and is subsequently restarted, tracing does
not start if the transaction code no longer appears in the transaction list.

To stop tracing in z/OS batch or IMS BMP, cancel the program and remove the
ELATRACE and ELATOUT DD cards from the runtime JCL.

Printing Trace Output
If the trace output is not directed to a file for the CICS or IMS/VS environments,
or the ELATOUT DD statement is not allocated for the z/OS batch or IMS BMP
jobs, the trace output is written to a wrap-around trace buffer in memory. The trace
output can be seen in dumps taken when programs end abnormally.

Printing the Trace Output in CICS
Trace output for CICS is routed to an extrapartition transient data queue which is
directed to a data set named ELATOUT if you direct the trace output to a file by
specifying yes (Y) on the ELAZ02 panel. The ELATOUT data set has the attributes
of LRECL=133, RECFM=FBA. The file can be printed as directed on the DD
statement for ELATOUT in the CICS startup JCL.

Printing the Trace Output in IMS/VS
The trace entries are written to an IMS message queue and can be printed with the
ELAEPUTL utility. The sample job stream is shipped as member ELAMQJUD in
the installation data set whose low-level qualifier is SELAJCL. You must tailor the
sample job stream to set IN=ELATOUT on the EXEC IMSBATCH statement.

Printing the Trace Output in z/OS Batch or IMS BMP
Trace output is directed to the ELATOUT DD statement and is printed as directed
on the DD statement. The statement must have the attributes
RECFM=FBA,LRECL=133.

Reporting Problems for Rational COBOL Runtime
For instructions on reporting problems, visit the following website:

http://www.ibm.com/software/awdtools/eglcobol/runtime/support

Chapter 20. Rational COBOL Runtime Trace Facility 161

162 IBM Rational COBOL Runtime Guide for zSeries

Chapter 21. Common Messages during Preparation for z/OS
Systems

This chapter contains some error messages from other products. It is not a
complete list. For a complete explanation of product messages, refer to the
documentation provided with that product.

Common Abend Codes during Preparation
Only the most frequently occurring preparation abend codes are listed in this
section. If you receive any other abend code or need a more complete explanation
of one of the abend codes, refer to the documentation for that product.

System B37
The temporary work space is filling up. The WSPC parameter that is used
in the build scripts to prepare generation output specifies the amount of
temporary space allocated.

To resolve the abend, use a symbolic descriptor option named WSPC and
set it to a larger value.

System 213, or System 230
Two program developers tried to update the directory of a PDS at the
same time. Submit the job again.

This problem can also be prevented by specifying ENQ=YES for the DD
statement for the PDS for which the 213 occurred. However, this serializes
preparation of servers when their preparation output is placed in the same
PDS's.

IMS 3022
The FormGroup that was generated into MFS source resulted in one or
more MFS control blocks that exceeds the 32,748-byte limit. The
FormGroup cannot be processed by MFS in its current form. Change the
FormGroup definition to split the FormGroup into two or more separate
FormGroups and then change your program as necessary.

MFS Generation Messages
Only the most frequently occurring MFS generation messages are listed in this
section. If you receive other error messages that start with DFS or if you need a
more complete explanation of one of the messages, refer to the IMS documentation
for your release of IMS.

DFS1141I name FMT DOES NOT DEFINE
DEVICE INPUT DESCRIPTION FOR
INPUT MESSAGE DESCRIPTION,
FMT NOT PROCESSED

Explanation: This message can occur when a
FormGroup was originally defined and generated with
both text and print forms. Then the FormGroup was
changed to have only print forms and generated again.
This results in a member in the IMS REFERRAL library
for the text forms and causes the MFS assemblies to
end with errors.

User response: Run the MFSRVC procedure that is
supplied with IMS and specify the SCRATCH function
to remove this member from the IMS REFERRAL
library. Refer to the MFS utilities documentation for
your release of IMS for additional information.

DFS1162I xxxxxxxx WARNING: ATTR=nn
SPECIFIED FOR DFLDNAME WHICH
HAD NO EATTR= SPECIFICATION.

Explanation: You specified the
mfsExtendedAttr="NO" build descriptor option or

© Copyright IBM Corp. 1994, 2012 163

included the extendedAttributes="NO" parameter for
one or more devices in the mfsDevice build descriptor
option.

User response: None, provided you wanted to specify
devices that do not support extended attributes.

DFS1428I SC=08 LTH=NN,NN EXCEEDS 4
SIGNIFICANT DIGITS. LAST 4
DIGITS USED.

Explanation: This message occurs if a form contains a
variable field longer than 8000 bytes for a print form or
longer than 1 less than the display size for a text form.

User response: Use form definition to split the

variable field into smaller fields. Change your program
to use the smaller fields and then generate the
FormGroup and program again.

DFS1587I SC=04 EGCS FIELD SPECIFIED ON AN
EVEN COLUMN

Explanation: You defined a DBCS constant or variable
field that starts on an even column (in other words, the
data starts in an even column).

User response: If the device you are using is an IBM
Personal System/55* or is in the IBM 5550 family, you
can ignore this message. Otherwise, use form definition
to change the definition of the form.

DB2 Precompiler and Bind Messages
Only the most frequently occurring DB2 precompiler and bind messages are listed
in this section. If you receive other messages that start with DSN or if you need a
more complete explanation of one of the messages, refer to the documentation for
your release of DB2.

DSNX039I S PRECOMPILER INTERNAL LIMIT
EXCEEDED

Explanation: A limit for the DB2 precompiler has been
exceeded. This can occur in programs that contain a
large number of SQL I/O functions

User response: Make one or more of the following
changes to the program:

v If some of the columns in your SQL tables are
defined as NOT NULL, remove the is
isSQLNullable=yes property from the corresponding
field in the EGL SQL record definitions. This reduces
the number of unique host variables which in turn
reduces the number of characters and lines for an
SQL statement and the total number of lines for the
program. This technique has the biggest impact for
the least amount of work and also has the potential
of improving performance.

v Review the use of default SQL statements. If the
default statements are retrieving more columns than

you actually need, modify the statements to specify
only the required columns.

v Shorten the name of the SQL record variable.

v Split the SQL statements into multiple statements.
For example, change one get statement into multiple
get statements and retrieve a subset of the columns
in each statement.

v Split the program into multiple programs

DSNX100I BIND SQL WARNING

Explanation: One or more DB2 tables have not been
created. The tables that do not exist will be identified in
an explanation associated with the message by:

xxxxxxx IS NOT DEFINED
where xxxxxxx is the table name.

User response: Create the necessary DB2 tables and
synonyms.

COBOL Compilation Messages
Only the most frequently occurring COBOL compilation messages are listed in this
section. If you receive other compilation messages that start with IGY or if you
need a more complete explanation of one of the messages, refer to the
documentation for your release of COBOL.

IGYPS2015I The paragraph or section prior to
paragraph or section
EZEMAIN-PROCESS did not contain
any statements.

IGYPS2023I Paragraphs prior to section
EZEMAIN-PROCESS were not
contained in a section

Explanation: These two messages occur if your
program has been processed by the DB2 precompiler.

User response: They are normal messages that you
can ignore.

IGYOP3091W Code from "?" to "?" can never be
executed, and was therefore discarded.

164 IBM Rational COBOL Runtime Guide for zSeries

IGYOP3093W The "PERFORM" statement at "?"
cannot reach its exit.

IGYOP3094W There may be a loop from the
"PERFORM" statement at "?" to itself.
"PERFORM" statement optimization was
not attempted.

Explanation: These messages occur if your program
has been processed using the OPTIMIZE compiler
option.

User response: These are normal messages that you
can ignore.

IGYPA3013W Data item "?" and "?" had overlapping
storage. An overlapping move will occur
at execution time.

Explanation: This message occurs if your program
attempts to assign the value of a data item to the same
data item.

User response: You might want to check that you
really intended to do this.

IGYPG3113W Truncation of high-order digit
positions may occur due to precision of
intermediate results exceeding 30.

Explanation: This message might occur if your
program was generated with the math="COBOL" build
descriptor option.

User response: You might want to change the
arithmetic expression identified in the message. For
example, you could split the expression into several
smaller ones.

If you do not change the expression, ensure that the
intermediate values will fall within the precision that
COBOL supports. Refer to the programming guide for
your release of COBOL for more information about the
precision of intermediate results.

IGYSC2025W "EZEPCB-?" or one of its subordinates
was referenced, but "EZEPCB-?" was a
"LINKAGE SECTION" item that did not
have addressability. This reference will
not be resolved successfully at
execution.

Explanation: This warning message occurs when PCBs
or any data structure is generated in the linkage
section, but is not used in a statement.

User response: Ignore the messages and the program
will work correctly.

Chapter 21. Common Messages during Preparation for z/OS Systems 165

166 IBM Rational COBOL Runtime Guide for zSeries

Chapter 22. Common System Error Codes for z/OS Systems

The information within this chapter is diagnosis, modification, or tuning
information.

Rational COBOL Runtime messages might include error codes from databases or
operating systems that are being used. This could include DB2, DL/I, z/OS VSAM,
or CICS EXEC Interface Block (EIB) codes.

This chapter contains only the most common errors that occur during file input
and output operations.

The error codes included in this chapter are for the following databases and
operating systems:
v CICS
v DB2
v DL/I
v VSAM
v COBOL

Common Error Codes
If you set v60ExceptionCompatibility program property to YES, the system
variable sysVar.errorCode contains an error code indicating a reason that a file I/O
statement or a system function invocation is not successful. Codes specific to the
system or the access method are returned when the sysCodes build descriptor
option is set to YES.

If you set the sysCodes build descriptor option to NO, the system error codes are
converted to EGL error codes. This allows applications developed previously under
Cross System Product or VisualAge Generator to receive the same error codes as
before.

System Error Code Formats for sysVar.errorCode
The following table shows the formats of sysVar.errorCode by specific
environment:

© Copyright IBM Corp. 1994, 2012 167

System Compatibility Considerations

CICS If sysVar.errorCode is in the form RSnnnnnn, look under nnnnnn in
“Common System Error Codes in sysVar.errorCode” on page 170.
Otherwise, the first 2 characters of sysVar.errorCode contain the first
byte of the EIBFN from the CICS EXEC interface block (EIB). The
remaining 6 characters contain bytes 0-2 of the EIBRCODE, also from the
CICS EXEC interface block.

If all of the following are true, then the first 2 characters of
sysVar.errorCode contain the first byte of the EIBFN and the remaining
6 characters contain bytes 0-2 of the EIBRCODE:

v The program is running in VisualAge Generator compatibility mode

v VGVar.handleSysLibErrors is set to 1

v A call statement is implemented with CICS LINK

Refer to the CICS application programmers' guide for an explanation of
the EIB codes.

168 IBM Rational COBOL Runtime Guide for zSeries

System Compatibility Considerations

z/OS batch If sysVar.errorCode is in the form RSnnnnnn, look under nnnnnn in
“Common System Error Codes in sysVar.errorCode” on page 170.

GSAM: sysVar.errorCode contains the DL/I status code after an I/O
statement. The last 6 characters of sysVar.errorCode are blanks.

SEQ: sysVar.errorCodee contains the COBOL status key value or values
in the first 2 characters. The remaining 6 characters are zeros.

SEQRS: The contents of sysVar.errorCode depend on the operation that
was not successful:

v If a dynamic allocation is not successful, the first 3 bytes of
sysVar.errorCode contain the value S99 (for SVC 99, dynamic
allocation), byte 4 is the SVC 99 return code in hexadecimal, and bytes
5-8 contain the error reason code in hexadecimal.

v If an OPEN is not successful, sysVar.errorCode contains return code 8
(‘00000008’).

v If a READ end-of-file condition occurs, sysVar.errorCode contains
return code 4 (‘00000004’).

v If a READ, WRITE, or CLOSE is not successful, sysVar.errorCode
contains return code 12 (‘00000012’).

VSAM: sysVar.errorCode contains the COBOL status key value or
values in the first 2 characters followed by 2 characters for the COBOL
VSAM return code (VSAM feedback code), 1 character for the COBOL
VSAM function code (VSAM component code), and 3 characters for the
COBOL VSAM feedback code (VSAM reason code).

VSAMRS: The operation that is not successful determines the contents
of sysVar.errorCode:

v If a dynamic allocation is not successful the first 3 bytes of
sysVar.errorCode contain the value S99 (for SVC 99, dynamic
allocation), byte 4 is the SVC 99 return code in hexadecimal, and bytes
5-8 contain the error reason code in hexadecimal.

v If an OPEN or CLOSE is not successful, the first 2 bytes of
sysVar.errorCode contain the error code from the VSAM application
control block (ACB) in hexadecimal. The remaining 6 characters are
zeros.

v If an operation other than OPEN or CLOSE is not successful, the first
2 characters are zeros followed by 2 characters for the COBOL VSAM
return code (VSAM feedback code), 1 character for the COBOL VSAM
function code (VSAM component code), and 3 characters for the
COBOL VSAM feedback code (VSAM reason code).

For VSAM codes, refer to z/OS V1R7 DFSMS Macro Instructions for Data
Sets (SC26-7408). For SVC 99 codes, refer to z/OS V1R7.0 MVS System
Codes (SA22-7626).

IMS/VS The only files that can be used in this environment are serial files
associated with IMS message queues. sysVar.errorCode contains the
DL/I status code after an I/O statement to one of these files. The last 6
characters of sysVar.errorCode are blanks.

IMS BMP IMS message queue: sysVar.errorCode contains the DL/I status code
after an I/O statement. The last 6 characters of sysVar.errorCode are
blanks.

Otherwise, same as z/OS batch in this table.

Chapter 22. Common System Error Codes for z/OS Systems 169

Common System Error Codes in sysVar.errorCode
The following table gives an explanation of the most common values that you
receive in sysVar.errorCode when the sysCodes build descriptor option is set to
YES. If your error code is not listed here, or you would like more information,
refer to the table in “System Error Code Formats for sysVar.errorCode” on page
167 and then the appropriate manuals for your environment.

Table 32. sysVar.errorCode error codes.

System Return code Meaning

z/OS batch A0000000 VSAM open error - empty
indexed file

z/OS batch BC000000 VSAM open error - file is not
in VSAM format

z/OS batch S9940210 File not available
z/OS batch S9940440 File not found
z/OS batch S99417** File not found
z/OS batch 00000004 on non-VSAM file End of file
z/OS batch 00000008 on non-VSAM file Error opening file
z/OS batch 00000012 on non-VSAM file Error on I/O or closing a file
z/OS batch 0008*004 for nonrelative End of file
z/OS batch 0008*004 for relative No record found
z/OS batch 0008*008 for an add statement Duplicate record
z/OS batch 0008*016 if get next for an indexed

record
End of file

z/OS batch 0008*016 if not using get next for an
indexed record

No record found

z/OS batch 0008*028 File full
z/OS batch 0008*116 No record found
z/OS batch ******74 No record found
Note: * represents any character.
Note: z/OS batch in this table includes IMS BMP

CICS ffrrrrrr Remote call or
vgLib.startTransaction()

Other CICS errors:
v ff = Hexadecimal

representation of EIBFN
byte 0

v rrrrrr = Hexadecimal
representation of
EIBRCODE bytes 0-2

CICS 0A010000 get next for a temporary
storage queue

End of file

CICS 0A010000 on direct I/O to a
temporary storage queue

No record found

CICS 0A080000 on temporary storage
queue

File is full

CICS 060F0000 on VSAM file End of file
CICS 00000000 Remote call or

vgLib.startTransaction()
Successful

CICS 00000203 Remote
vgLib.startTransaction()

Transaction identifier that is
not valid

CICS 00000204 Remote call Program name that is not
valid

CICS 00000207 Remote call or
vgLib.startTransaction()

System identifier that is not
valid

CICS 00000208 Remote call Link out of service or is not
valid

170 IBM Rational COBOL Runtime Guide for zSeries

Table 32. sysVar.errorCode error codes. (continued)

System Return code Meaning

CICS 06810000 on VSAM file No record found
CICS 06820000 on VSAM file Duplicate record
CICS 06830000 on VSAM file File is full
CICS 08E10000 on transient data Format error
CICS 08010000 on a transient data queue End of file
CICS 08020000 on a transient data queue File not found
CICS 08080000 on transient data Transient data queue not

open
CICS 12320000 Queue is already in use

EGL Error Codes
The error codes list is sequenced by error code, with the alphabetic error codes (A
to Z) occurring before the numeric error codes (0 to 9). If you set the sysCodes
build descriptor option to NO, sysVar.errorCode will contain error codes that are
compatible with the Cross System Product codes.

Table 33. Rational COBOL Runtime Error Codes

Error code Component Probable Cause

Cnn File control/request These error codes do not have an EGL
equivalent I/O error value. Either CICS
returned an IOERR error or VSAM
returned a return code of 12 on file
input/output. The nn is replaced by the
VSAM reason code from the feedback
field. For more information, refer to the
z/OS V1R7 DFSMS Macro Instructions for
Data Sets (SC26-7408) manual.

Fnn File control/request These error codes are CICS EIBRCODES,
other than ILLOGIC, IOERR, and those
that have EGL equivalent I/O error
values. The nn is replaced by the
EIBRCODE (byte 0). For more
information, refer to the application
programming reference for your release of
CICS.
Note: All error codes, other than the ones
that have EGL equivalent I/O error
values, cause the program to end. An
error message is issued to inform you that
the program ended because of a
send/receive error. The error message
includes the error code.

FE1 File Control/request Transient data queue - Queue length and
EGL record length do not match. The
invalidFormat EGL I/O error value is set.

F02 File Control/request Transient data queue - File not found. The
fileNotFound EGL I/O error value is set.

F08 File control/request An attempt was made to gain access to an
extrapartition transient data queue, but
the queue has not been opened yet. Exit
and use CEMT to open the queue.

Chapter 22. Common System Error Codes for z/OS Systems 171

Table 33. Rational COBOL Runtime Error Codes (continued)

Error code Component Probable Cause

52 Terminal support You attempted to run an EGL program
from an unsupported device (such as a
3278-52 terminal). This device is not
supported by EGL.

101 Message processing The message was truncated.

102 Contents control The module specified on a LOAD macro
is already in storage.

File control/request The end of file was reached. The
endOfFile EGL I/O error value is set.
Note: endOfFile is set when a get next is
performed on an empty file.

Service request An ITEMERR condition was received
from CICS because the maximum number
of records allowed in a temporary storage
queue (32767) was exceeded.

103 File control/request You performed an operation on a record
that has a duplicate key, or a key in the
record for an alternate index is
duplicated. The I/O operation completed,
and the duplicate EGL I/O error value is
set.

104 File control/request The end of file was reached. The
endOfFile EGL I/O error value is set.

115 Service request An EXEC CICS ENQ was not successful.

116 Service request An EXEC CICS DEQ was not successful.

20B Storage allocation Operands that are not valid were
specified on either a GETMAIN or
FREEMAIN macro.

20C Defined data set The data set name specified on an issued
DEFDS command already exists in the
external work file.

Storage allocation An error occurred while processing a
FREEMAIN macro.

200 Service request An service request was issued that is not
valid. This is a system error. Contact the
IBM Support Center.

201 File open/connect The connection already exists. The
possible cause is a file with the same
name is already in use. The
fileNotAvailable EGL I/O error value is
set.

Message processing Variables were passed to be built into the
message, but the message contained no
variable fields; or, the message contained
variable fields, and no variables were
passed for them.

201- 206 Service request Service request errors occurred while
processing a DEFDS command. This is a
system error. Contact the IBM Support
Center.

172 IBM Rational COBOL Runtime Guide for zSeries

Table 33. Rational COBOL Runtime Error Codes (continued)

Error code Component Probable Cause

202 File control/request Record not found. The noRecordFound
EGL I/O error value is set.

Storage allocation The ORIGIN specified on a FREEMAIN
macro does not match storage already in
use.

203 File control/request The record was not found. The EGL I/O
error value noRecordFound is set.

Storage allocation Either the ORIGIN specified on a
FREEMAIN macro does not begin on a
doubleword boundary, or 0 LENGTH was
specified on a GETMAIN.

204 Storage allocation An attempt has been made to free storage
that has not been allocated or that has
already been freed.

205 File control/request The record was not found. The
noRecordFound EGL I/O error value is
set.
Note: The noRecordFound EGL I/O error
value is set when a get next or get
previous is preceded by a set record
position on an empty indexed file.

Storage allocation The LENGTH specified on a FREEMAIN
macro is 0.

206 File control/request You attempted to store a record with a
duplicate key while using an index that
does not allow duplicate keys. The
duplicate EGL I/O error value is set.

207 File control/request The record was not found. The
noRecordFound EGL I/O error value is
set.

208 File control/request An error occurred when you attempted to
connect or write to the log file on CICS. A
possible reason for the error is that no
TDQUEUE entry was found for the log
file.

Service request The NDSNAME in an ALTDS request is
not valid. This is a system error. Contact
the IBM Support Center.

Storage allocation The storage specified on a FREEMAIN
macro is already free.

209 Service request The name specified by the NDSNAME on
an ALTDS command already exists in the
external work file. This is a system error.
Contact the IBM Support Center.

210- 211 Service request Miscellaneous errors occurred on an
ALTDS request. This is a system error.
Contact the IBM Support Center.

212 Service request An I/O error occurred while copying data
from the work file to the external work
file during an ALTDS service request.

Chapter 22. Common System Error Codes for z/OS Systems 173

Table 33. Rational COBOL Runtime Error Codes (continued)

Error code Component Probable Cause

213 Service request The COPIES operand on a
SUBMIT.PRINT service request is not
valid. This is a system error. Contact the
IBM Support Center.

214 Service request The data set on a SUBMIT.PRINT service
request cannot be found. This is a system
error. Contact the IBM Support Center.

215 File control/request You attempted to store a record with a
duplicate key while using an index that
does not allow duplicate keys. The
duplicate EGL I/O error value is set.

216 File open/connect A connection was attempted to an ESDS
file or transient data queue in direct
mode. The invalidFormat EGL I/O error
value is set.

Service request The data set specified on a DEFDS
request matches a CONNECT already in
use. This is a system error. Contact the
IBM Support Center.

217 File open/connect An attempt was made to subconnect to a
serial file. Check to see if a called
program is attempting to reference the
same serial file that has been referenced
by the calling program.

Service request A PRINT error has occurred for one of the
following reasons:

v An error occurred while writing to the
transient data queue on CICS. The most
common errors are QIDERR, IOERR,
LENGERR, and NOSPACE.

v An error occurred while writing to the
EZEPRINT data definition name (DD
name) in z/OS batch or IMS BMP. A
possible cause is that the printer file
(for example, EZEPRINT) has been
allocated incorrectly or has not been
allocated at all. For example, the data
set allocated for the print output has
the wrong record format (anything
other than VBA) or the wrong record
length (shorter than the print output
line length).

218 Service request The file is not available. The
fileNotAvailable EGL I/O error value is
set.

22A File control/request The available storage space has been
exhausted. Try the operation again. If the
problem persists, contact your system
programmer.

174 IBM Rational COBOL Runtime Guide for zSeries

Table 33. Rational COBOL Runtime Error Codes (continued)

Error code Component Probable Cause

220 File open/connect A format error occurred. Either the
characteristics of a file are not supported
by EGL, or they are incompatible with the
EGL record definition. The invalidFormat
EGL I/O error value is set. For example, a
serial file is trying to access a member of
a PDS data set, but the JCL for z/OS
batch or IMS BMP does not specify a
member name

File control/request The record length for a file is larger than
the maximum record length defined in
the system.

221 Service request An ENQ was not successful while writing
to the transient data queue on CICS. This
is a system error. Contact the IBM
Support Center.

223 Service request The attach of the print subtask was not
successful, or the print subtask abended.
This is a system error. Contact the IBM
Support Center.

225 Service request The print subtask abended. This is a
system error. Contact the IBM Support
Center.

226 File control/request An IO error occurred while reading or
writing from temporary storage on CICS.
This is a system error. Contact the IBM
Support Center.

25A File control/request The data set cannot be extended because
VSAM cannot allocate additional
direct-access storage space. Either not
enough space is left to make the
secondary allocation request, or you
attempted to increase the size of a data
set while processing with SHROPT=4 and
DISP=SHR. The full EGL I/O error value
is set.

251 File open/connect For CICS environments, the file control
table (FCT) entry was not found,
indicating a real file or transient data
queue was not properly defined or
generated. For z/OS batch or IMS BMP
environments, either the DD name has
not been allocated, or the data set for the
dynamic allocation does not exist.

280 File control/request The data set that you are trying to
connect to is already in use. A probable
cause is that your program has a data set
associated with one record variable and
you are trying to use another record
variable with the same data set. You need
to issue a CLOSE on the first record
variable to free the data set before trying
to use it with another record variable.

Chapter 22. Common System Error Codes for z/OS Systems 175

Table 33. Rational COBOL Runtime Error Codes (continued)

Error code Component Probable Cause

291- 294 Service request A mapping error occurred.

Terminal support A mapping error occurred.

380 File control/request A deadlock occurred. One transaction is
attempting to update a record that is
currently locked by another transaction.
The deadlock EGL I/O error value is set.

381 File control/request The control interval for a record is already
held in exclusive control by another
requester. The deadlock EGL I/O error
value is set. For CICS, the returned code
is INVREQ. This is assumed to have
occurred due to one transaction’s attempt
to do two get forUpdate statements to the
same file. If this is not the case, see the
description of INVREQ in the application
programming reference for your release of
CICS.

389 File control/request The resource control block could not be
found to process the request against. This
is a system error. Contact the IBM
Support Center.

399 File control/request You attempted to store a record to a
temporary storage queue with a key that
exceeds 32767. The key is too large for
temporary storage queues, which cannot
have more than 32767 records.

4nn File open/connect For z/OS batch or IMS BMP
environments, the VSAM GENCB for an
ACB was not successful. The value of nn
is determined from VSAM return codes. If
register 15 contains 4, nn is replaced by
the contents of register 0. If register 15
does not contain 4 (or 0), nn is replaced
by 50 plus the contents of register 15.

5nn File open/connect For z/OS batch or IMS BMP
environments, an OPEN request is not
successful. For VSAM files in z/OS batch
or IMS BMP environments, a SHOWCB
for the ERROR field is done after the
problem with the OPEN request. The
value of the ERROR field replaces nn. For
non-VSAM sequential files in z/OS batch
or IMS BMP environments (QSAM), nn is
replaced with a value of 0. For spool files
in a CICS environment, nn is also
replaced with 0.

5A0 File open/connect An attempt was made to open a VSAM
data set for input, but the data set was
empty.

176 IBM Rational COBOL Runtime Guide for zSeries

Table 33. Rational COBOL Runtime Error Codes (continued)

Error code Component Probable Cause

6nn File open/connect The VSAM GENCB for an RPL was not
successful. For z/OS batch and IMS BMP
environments, the value of nn is
determined from VSAM return codes. If
register 15 contains 4, nn is replaced by
the contents of register 0. If register 15
does not contain 4 (or 0), nn is replaced
by 50 plus the contents of register 15.

701 File open/connect On CICS Version 2.1 or later, the file
cannot be opened or connected. The error
is not defined in the FCT flags.

702 File open/connect The VSAM SHOWCB or MODCB macro
was not successful. This usually means
that the file is not open.

703 File open/connect The VSAM TESTCB macro was not
successful.

705 File open/connect For CICS only, a connection was
attempted to transient data or a
temporary storage queue, but a VSAM
file has the same name.

706 File open/connect On CICS Version 2.1 or later, the file is
UNENABLED and cannot be opened or
connected.

707 File open/connect On CICS Version 2.1 or later, the file is
DISABLED or DISABLING and cannot be
opened or connected.

708 File open/connect On CICS Version 2.1 or later, the user is
not authorized to have access to the file.

709 File open/connect On CICS Version 2.1 or later, an I/O error
occurred on the SET data set Open
command.

768 File open/connect The OPEN or connection was not
successful due to a GETMAIN error when
requesting storage for control blocks
associated with sequential files.

8nn File control/request These return codes do not have an EGL
equivalent I/O error value. Either CICS
returned an ILLOGIC error, or VSAM
returned a return code of 8 on file
input/output. The nn is replaced with the
VSAM error code. For more information,
see the z/OS V1R7 DFSMS Macro
Instructions for Data Sets (SC26-7408)
manual.

File open/connect A storage allocation was not successful.

80C Storage allocation There is insufficient storage to satisfy a
GETMAIN request.

802 File open/connect The resource is not associated.

Storage allocation There is insufficient storage for allocation.

803 Contents control The module specified on a LOAD macro
could not be located.

Chapter 22. Common System Error Codes for z/OS Systems 177

Table 33. Rational COBOL Runtime Error Codes (continued)

Error code Component Probable Cause

804 File control/request This return code is received from CICS
and indicates that a QIDERR or ITEMERR
occurred while trying to gain access to a
temporary storage queue.

805 Contents control The module specified on a LOAD macro
is damaged.

Message processing An unsupported option was specified on
an INFORM macro.

806 Contents control For z/OS batch or IMS BMP, the module
specified on a LOAD macro could not be
located.

807 Contents control Insufficient storage is available to load the
specified module.

81C File control/request A temporary storage queue is full. The
full EGL I/O error value is set.

987 File control/request For z/OS batch and IMS BMP, a branch
was made to the SYNAD routine as the
result of a GET to a non-VSAM serial file.
A possible reason is that the file is empty
or the blocking factor is wrong.

988 File control/request For z/OS batch and IMS BMP, a branch
was made to the SYNAD routine as the
result of a PUT to a non-VSAM serial file.
A possible reason is that the file is empty
or the blocking factor is wrong. For CICS,
a WRITE request to a spool file was not
successful.

989 File control/request An error occurred while trying to close a
file.

999 File control/request An unsupported request was made for a
serial file. A probable cause is that the
EGL record associated with this file was
not defined as a serial record.

Common SQL Codes
After an SQL I/O statement, the SQL code is stored in the sysVar.sqlData.sqlCode
system variable. Only the most frequently occurring SQL codes are listed in this
section. If you receive other SQL codes or if you need a more complete explanation
of one of the SQL codes, refer to the documentation for your release of DB2.

100 No rows were found by SQL that meet the search criteria specified in the
WHERE clause of the SQL statement, or if processing a get statement with
a position option in conjunction with an open or open forUpdate
statement, the end of the selected rows has been reached. The possible
causes are the following:
v The key value(s) were not moved correctly to the host variable(s) used

in the WHERE clause.
v No rows meet the search criteria specified in the WHERE clause.
v Rational COBOL Runtime stripped trailing blanks for the character host

variables used in a LIKE predicate in the WHERE clause. You can set the

178 IBM Rational COBOL Runtime Guide for zSeries

sqlIOTrace build descriptor option to YES to enable tracing of the data
sent to SQL and the data coming back from SQL. For more information,
see Chapter 20, “Rational COBOL Runtime Trace Facility,” on page 155.

-301, -302, -303, -304
The EGL data item definition does not match the definition of the same
column in the DB2 table. This can be caused by defining a column as
variable length, but not defining the data item in EGL with a
variable-length SQL code. This can also be caused by specifying a different
length to EGL than what you defined in the DB2 table.

Make the necessary changes in the EGL data item definition to match the
DB2 table and generate the program again.

-302 For the IMS/VS environment, you might have allocated the DB2 work
database with a 4KB page size instead of the required 32KB page size.
Refer to the Rational COBOL Runtime program directory for information
about installing a DB2 work database.

-805 The DBRM for the current program was not bound as part of the current
DB2 plan. Possible causes are:
v The BIND process was never run for the program.
v An incorrect plan name was specified at startup.
v The plan name specified in the DB2TRAN or DB2ENTRY definition for

CICS did not match the plan name used in the BIND process.
v All programs that run together under a single transaction or job step

must be bound into the same DB2 plan.

Look at the message inserts to see what DB2 returned as the program
name and plan name. If these are what you expect, review the steps used
for preparing the program.

-818 The DB2 precompiler-generated time stamp in the load module is different
from the database request module (DBRM) used on the most recent BIND
for the PLAN being used. The load module and the DBRM from the
precompiler must match and one of them is not from the most recently-run
precompile. This typically happens when the precompile, link-edit, and
bind process is run more than once and either the DBRM library or the
load library used for the load module is changed. This creates the
opportunity to pick up the old load module at run time if the old load
library is first in the search sequence at run time. Alternatively, the BIND
process might be using an old DBRM library that contains an old copy of
that member.

Ensure that you are running with the most recent copy of the load module
and that you are using the same DBRM library on the precompile and
BIND steps. On CICS ensure that the latest copy of the load module has
been picked up by issuing an CICS NEWCOPY command or by using the
Rational COBOL Runtime new copy utility. On IMS/VS ensure that the
latest copy of the load module has been picked up by recycling the
message region.

-911,-913
A deadlock condition occurred. Possible causes are:
v The isolation level was set for repeatable read.
v There were long periods of time between commit points.
v In EGL, the program issued a get forUpdate statement, but failed to

issue a related replace statement. In VisualAge Generator, the program
issued an UPDATE without a REPLACE.

Chapter 22. Common System Error Codes for z/OS Systems 179

Note: The program should be coded to handle these conditions.

-922 Connection authorization was not successful. The type of error is indicated
in the SQL error message. Some typical causes are not granting authority
for the DB2 plan or not creating a synonym for one or more of the DB2
tables.

Make the necessary changes to provide authorization to the DB2 plan and
then run the program again. You might also want to refer to the
documentation for your release of DB2 for additional causes of the
authorization error.

Common DL/I Status Codes
After a DL/I I/O statement, the DL/I status code is stored in the
dliVar.statusCode system variable. Only the most frequently occurring DL/I status
codes are listed in this section. If you receive other DL/I status codes or if you
need a more complete explanation of one of the DL/I status codes, refer to the IMS
Messages and Codes Volume 1 manual for your release of IMS.

AD The function parameter on the call is not valid. If the function code is
correct, the status code can be from an I/O or alternate PCB for a database
call. You might have a mismatch between the EGL PSB record definition
and the IMS PSB definition.

AI A data management open error occurred. Either no DD statements were
supplied for logically related databases, or the DD name is not the same as
the name specified on the DATASET statement of the DBD. The segment
name area in the DB PCB has the DD name of the data set that could not
be opened.

AJ The format of one of your SSAs is not valid. Either the SSA contains a
command code for the call that is not valid, or the SSA uses an R, S, W, or
M command code for a segment for which there are no subset pointers
defined in the DBD.

AK An SSA contains either a field name that is not valid or a name that is not
defined in the DBD, or the EGL dliFieldName property for the field in the
DL/I segment record does not match the name defined to DL/I.

AM The call function is not compatible with the processing option in the PCB,
the segment sensitivity, the transaction-code definition, or the program
type.

GA In trying to satisfy an unqualified GN or GNP call, DL/I crossed a
hierarchic boundary into a higher level.

GB In trying to satisfy a GN, DL/I reached the end of the database.

GD The program issued an ISRT that was not qualified for all levels above the
level of the segment being inserted. The segment might have been deleted
by a DLET using a different DB PCB.

GE DL/I is unable to find a segment that satisfies the segment described in a
get call.

GK DL/I has returned a different segment type at the same hierarchic level for
an unqualified GN or GNP.

GP The program issued a GNP when parentage is not established, or the
segment level specified in the GNP is not lower than the level of the
established parent.

180 IBM Rational COBOL Runtime Guide for zSeries

II The program issued an ISRT that tried to insert a segment that already
exists in the database.

Common VSAM Status Codes
Only the most frequently occurring VSAM codes are listed in this section. If you
receive other VSAM codes or if you need a more complete explanation of one of
these values, refer to the z/OS V1R7 DFSMS Macro Instructions for Data Sets
(SC26-7408) manual.

OPEN request type
Code Meaning

64 Warning message: OPEN encountered an empty alternate index that is part
of an upgrade set.

74 This is a warning message indicating the data set was not properly closed.
Either the implicit verify for the OPEN was unsuccessful, or the user
specified that the implicit verify should not be attempted for the OPEN. A
previous VSAM program might have ended abnormally. The VERIFY
command of Access Method Services can be used to properly close the
data set.

80 The DD statement for this access method control block is either missing or
not valid.

94 Either no record for the data set to be opened was found in the available
catalog or catalogs, or an unidentified error occurred while VSAM was
searching the catalog.

98 Security verification was not successful; the password specified in the
access method control block for a specified level of access does not match
the password in the catalog for that level of access.

A0 The operands specified in the ACB or GENCB macro are inconsistent either
with each other or with the information in the catalog record. You might
have attempted to open an empty data set for input only (get next
statement).

A8 The data set was not available for the type of processing you specified, or
an attempt was made to open a reusable data set with the reset option
while another user had the data set open.

BC The data set indicated by the access method control block is not a valid
type of data set for specification by an access method control block. You
might have used a sequential data set as the physical file, but specified
VSAM or VSAMRS as the file type for resource association when you
generated the program.

C0 An unusable data set was opened for output.

C4 Access to data was requested using an empty path.

CLOSE request type
Code Meaning

04 The data set indicated by the access method control block is already closed.

88 Not enough virtual storage was available in the address space of your
program for the work area required by CLOSE.

Chapter 22. Common System Error Codes for z/OS Systems 181

94 An unidentified error occurred while VSAM was searching the catalog.

GET/PUT/POINT/ERASE/CHECK/ENDREQ request types

Note: The following occur when register 15=8(8).

Code Meaning

08 An attempt is made to store a record with a duplicate key, or there
is a duplicate record for an alternate index with the unique key
option.

6C The RECLEN specified was one of the following:
v Larger than the maximum allowed
v Equal to 0
v Smaller than the sum of the length and the displacement of the

key field
v Not equal to the record(slot) size specified for a relative record

data set

70 The KEYLEN specified was too large or equal to 0.

C0 A relative record number that is not valid was encountered.

COBOL Status Key Values
This shows the most frequently occurring COBOL status key values. If you receive
other status key values or if you need a more complete explanation for one of
these values, refer to the application programming language reference for your
release of COBOL.

Status Key Explanation

10 The end of a file was reached.

22 An attempt was made to write a record with a key that duplicated
one that was already in the file.

23 Record not found. This can also be caused by an optional file not
being allocated.

35 No DD statement was included in the JCL. This can occur if the
program calls another program or transfers to another program
using a transfer to program statement, but the DD statements for
the second program have not been added to the sample runtime
JCL for the main program.

39 The physical file that you specified during resource association
does not match the file characteristics that you specified during
record definition. The file characteristics include file organization
(sequential, relative or indexed), the prime record key, the alternate
record keys, and the maximum record size.

44 A variable-length record was written that is not valid. This can
occur if the value in the numElementsItem field for the record is
larger than the maximum value, or the value in the lengthItem
field for the record is larger than the maximum length of the
record.

96 No DD statement was included in the JCL for a VSAM file. This
can occur if the program calls another program or transfers to
another program using a transfer to program statement, but the

182 IBM Rational COBOL Runtime Guide for zSeries

DD statements for the second program have not been added to the
sample runtime JCL for the main program.

Chapter 22. Common System Error Codes for z/OS Systems 183

184 IBM Rational COBOL Runtime Guide for zSeries

Chapter 23. Rational COBOL Runtime Return Codes, Abend
Codes, and Exception Codes

The information within this chapter is diagnosis, modification, or tuning
information.

Only the most frequently occurring abend codes are listed in this section. If you
receive other abend codes or if you need a more complete explanation of one of
the codes, refer to the z/OS messages and codes manual for your release of z/OS.

Return Codes
This section contains a listing of codes set by Rational COBOL Runtime and
returned in the COBOL return code of a program.

If a generated program completes normally, the COBOL return code is set to the
value in the sysVar.returnCode. This code must be less than or equal to 512.
Return codes greater than 512 are reserved for Rational COBOL Runtime. The
return codes set by Rational COBOL Runtime are:

693 The program ended due to an error detected by Rational COBOL Runtime.
The error description is reported as described in Chapter 18, “Diagnosing
Problems for Rational COBOL Runtime on z/OS Systems.”

4093 A program generated using EGL ended due to an error detected by
Rational COBOL Runtime.

If LE detects an error and returns to the operating system, the LE return code
modifier (2000 - error, 3000 - severe error, or 4000 - critical error) is added to the
user or Rational COBOL Runtime return code.

ABEND Codes
Rational COBOL Runtime reports errors by error messages whenever possible.
Abend codes are issued only in situations where initialization has not progressed
to the point where messages can be issued or when the error messages cannot be
written to their normal destination.

CICS Environments
For CICS, you can control whether or not a core dump is taken by using the
diagnostic controller utility. If a core dump is taken, the dump code is ELAD. See
“Controlling Error Reporting in CICS” on page 140 for information on the
diagnostic controller utility.

ELA1 This abend code should never be received. However, if register 1 in a
dump contains "ELA1", then a database manager or subsystem interface
module, such as ASMTDLI for DL/I access, was not linked with a Rational
COBOL Runtime program at product installation. Registers 3 and 4 in the
dump usually contain the name of the stub program. The load module
where the abend occurred is the module that was not linked correctly.

Refer to the Program Directory for Rational COBOL Runtime for zSeries for
information on correctly linking the abending load module.

© Copyright IBM Corp. 1994, 2012 185

ELA2 The Task Work Area (TWA) does not exist or is not long enough to be used
by Rational COBOL Runtime. The TWA length must be greater than or
equal to the sum of 1024 plus the twaOffset (TWA offset) build descriptor
option specified when the initial program in the transaction was generated.

Use the TWASIZE parameter in the TRANSACTION definition to define a
TWA with an adequate length for the transaction.

ELA3 Load for module ELARSCNT was not successful. Rational COBOL
Runtime has not been installed correctly.

Ensure the CICS region can access the Rational COBOL Runtime library
and that module ELARSCNT is defined in the PROGRAM definition.

ELA4 Load for module ELARPRTX was not successful. Rational COBOL Runtime
has not been installed correctly.

Ensure the CICS region can access the Rational COBOL Runtime library
and that module ELARPRTRX is defined in the PROGRAM definition.

ELA5 Load for module ELARPRTC was not successful. Rational COBOL Runtime
has not been installed correctly.

Ensure the CICS region can access the Rational COBOL Runtime library
and that module ELARPRTC is defined in the PROGRAM definition.

ELA6 The dynamic storage stack used for working storage for Rational COBOL
Runtime modules was exhausted and Rational COBOL Runtime could not
continue.

This problem should not occur. Report the problem to the IBM support
center.

ELA7 A GETMAIN was not successful. There was not enough storage for the
program to complete.

Try the program again when the region is less busy or try it again in a
larger region.

ELA9 Load or link for a Rational COBOL Runtime module was not successful.
Rational COBOL Runtime has not been installed correctly. Use CEDF to
determine the module name. Look for a PGMIDERR on a CICS LOAD or
CICS LINK command.

Ensure that the CICS region can access the Rational COBOL Runtime
library and the module name being loaded is defined in the PROGRAM
definitions.

ELAB A call was made to a main program, which is not allowed or a non-EGL
program was transferred to with a transfer to program statement and the
isExternal=YES option was not specified on the transfer to program
statement or the EXTERNALLYDEFINED option was not specified in the
linktype option in the transfer to program entry in the linkage table part.

ELAC Rational COBOL Runtime has detected a FREEMAIN request that is not
valid. Collect the dump and contact the IBM Support Center for assistance.

ELAE A generated program has ended because of a serious error. This occurs for
one of the following reasons:
v Storage has been corrupted so that a dump is necessary to debug the

abend.
v Error handling was unable to write messages to the error destination

queue or to the user at the terminal. The dump is necessary to make the

186 IBM Rational COBOL Runtime Guide for zSeries

diagnostic information available. The situation can occur if the error
destination queue specified for the transaction using the diagnostic
controller utility is not defined to CICS. In CICS, if the error destination
queue is defined as an intrapartition queue, this situation occurs when
there is no more space on the intrapartition queue and the error
messages cannot be written.

v A severe error has occurred. Refer to the error destination queue for the
corresponding error messages. The default name is ELAD. The queue
name can be changed using the diagnostic controller utility.

See “Rational COBOL Runtime ABEND Dumps” on page 151 for
information on how to find error messages in the dump on an ELAE
abend.

ELAF ELATSRST has detected one of the following errors:
v ELATSRST was not initiated with a CICS XCTL command (for example,

the restart transaction ID was associated directly to ELATSRST).
v The COMMAREA length on entry was not 0 or 10.
v The Rational COBOL Runtime portion of the TWA had been initialized,

indicating that a converse was not in process or the non-EGL program
uses the TWA and the EGL program was not generated with the proper
TWA offset.

v Information in the COMMAREA was not valid, indicating that a
converse statement was not in process.

v Information in the COMMAREA indicates that ELATSRST was started
with a show statement or during the inputForm processing for the
program.

ELAW A program and its associated FormGroups or a FormGroup and its
associated tables were generated using incompatible versions of COBOL
generators. For example, the FormGroup might have been generated by
Cross System Product and the program generated by EGL.

ELAX An exception has been detected, or thrown by the user, in part of the CICS
EGL application or by a subsequently called application, that has not been
handled by an EGL language try ... onException block. As this unhandled
exception has made its way back to the main EGL program without being
handled, a CICS abend of ELAX is issued. To determine the cause of this
unhandled exception, the easiest way is to look in the ELAD queue under
CICS by using these two commands: CEBR, and then as a response to the
CEBR transaction, enter: GET ELAD. This will display the messages in the
ELAD queue. These messages are ordered chronologically, so look near or
at the bottom of the queue. There will be error messages about the type of
exception, the program it was in, and the line number where it occurred.
Alternatively, if the EGL statementTrace build descriptor option is set to
YES, then the statement trace spool file will also show where the exception
was thrown.

IMS, IMS BMP, and z/OS Batch Environments
1600 A generated program has ended because of a serious error. This occurs for

one of the following reasons:
v Storage has been corrupted so that a dump is necessary to debug the

abend.
v Error handling was unable to write messages to the error destination

queue or to the user at the terminal. The dump is necessary to make the

Chapter 23. Rational COBOL Runtime Return Codes, Abend Codes, and Exception Codes 187

diagnostic information available. In IMS, the situation can occur if the
error destination queue specified using the errorDestination build
descriptor option is not defined to IMS.

v A severe error has occurred. In IMS, refer to the error destination queue
specified using the errorDestination build descriptor option for the
corresponding error messages. In z/OS batch, refer to the data set
ELAPRINT for the messages.

See “Rational COBOL Runtime ABEND Dumps” on page 151 for
information on how to find error messages in the dump on a 1600 abend.

1601 A database manager or subsystem interface module (for example,
ASMTDLI for DL/I access) was not linked with a Rational COBOL
Runtime program at product installation. Registers 3 and 4 in the dump
contain the name of the stub program. The abending load module is the
module that was not linked correctly.

Refer to the Program Directory for Rational COBOL Runtime for zSeries for
information on correctly linking the abending load module.

1602 A program generated with the imsFastPath=YES build descriptor option
ended because of a run unit error. The abend is issued to prevent any
further scheduling of the program in error.

See “Rational COBOL Runtime ABEND Dumps” on page 151 for
information on how to find error messages in the dump on a 1602 abend.
Depending on the build descriptor options specified for the program, the
message might also have been written to an error diagnostic message
queue, to the IMS log, or to an ELAPRINT file. See Chapter 18,
“Diagnosing Problems for Rational COBOL Runtime on z/OS Systems” for
more information on Rational COBOL Runtime error reporting.

1606 The dynamic storage stack used for working storage for Rational COBOL
Runtime modules was exhausted and Rational COBOL Runtime could not
continue.

This problem should not occur. Report the problem to the IBM Support
Center.

1608 Rational COBOL Runtime has detected a FREEMAIN request that is not
valid. Collect the dump and contact the IBM Support Center for assistance.

1610 A program and its associated FormGroups, or a FormGroup and its
associated tables were generated using incompatible versions of COBOL
generators. For example, the FormGroup might have been generated by
Cross System Product and the program generated by EGL.

3888 An exception has been detected, or thrown by the user, in part of the EGL
application or by a subsequently called application, that has not been
handled by an EGL language try ... onException block. This exception
made its way back to the main EGL program without being handled. To
determine the cause of this unhandled exception, look at the output for the
ELAPRINT DD statement for a z/OS Batch job, IMS BMP job, or IMSVS
region JCL. This output contains error messages about the type of
exception, the program it was in, and the line number where it occurred.
Alternatively, if the EGL statementTrace build descriptor option is set to
YES, then the statement trace shows where the exception was thrown.

Exception Codes
The following exception codes are issued by the Rational COBOL Runtime:

188 IBM Rational COBOL Runtime Guide for zSeries

9980 No library function with specified signature exists; you may need to
regenerate the library

9981 EGL runtime exception

9986 Segmented converse exception; internal EGL use only

9988 User thrown exception

9989 DL/I exception (not supported for EGL Version 7.0)

9990 File I/O exception

9991 MQ I/O exception (not supported for EGL Version 7.0)

9992 SQL exception

9993 Service invocation exception

9994 Service binding exception

9996 Invocation exception

9997 Null value exception

9998 Index out of bounds exception

9999 Type cast exception

Chapter 23. Rational COBOL Runtime Return Codes, Abend Codes, and Exception Codes 189

190 IBM Rational COBOL Runtime Guide for zSeries

Chapter 24. Codes from Other Products for z/OS Systems

The chapter contains lists of common system abend codes, COBOL runtime
messages, LE abend codes, and common runtime messages and abend codes from
IMS and CICS

Common System Abend Codes for All Environments
Only the most frequently occurring abend codes are listed in this section. If you
receive another abend code or if you need a more complete explanation of one of
the abend codes, refer to the System Codes manual for your release of z/OS.

System 0C4 This code can occur on a transfer to program statement if there is
a print services or table program with the same name as the
transferred-to program. This code can also occur when a print
services or table program is called but there is a different program
(for example, a non-EGL program or an EGL program) with the
same name. Using naming conventions can eliminate this problem.

This code can also occur if you add the validatorDataTable
property to a form in a FormGroup that is shared by multiple
programs and do not generate all the programs again.

System 0C7 Data exception. The abend occurs when fields defined as NUM,
NUMC. DECIMAL, or PACF are retrieved from a database or file
and are found to contain data of a different format.

The abend can also occur if fields that are not initialized are used
in calculations or comparisons. This happens if the program
attempts to read a record from a database and the record is not
found, but the program uses fields in the record anyway.

The abend can also occur if one of the following is true:
v There are redefined records with different data types or variable

field boundary alignments from the original record.
v The inputRecord for the program receives a transferred record

that contains different data types or variable-field boundary
alignments from the original record.

For initialization problems with NUM and NUMC fields, you
might be able to use the spacesZero="YES" build descriptor option
to help minimize the problem. However, be sure to consider the
performance implications first.

System 806 Module not found in a library. This can occur if a new version of a
module is put into a load library and is placed in secondary
extents. To avoid this when you allocate load libraries, specify a
large primary allocation and 0 for the secondary allocation. This
insures that if there is enough space for the load module it will be
placed in the primary extent. If there is not enough space, there
will be an abend (for example, a B37 abend for insufficient space)
when you link the module into the load library. Using this
technique detects the space problem during the preparation step
rather than at run time.

© Copyright IBM Corp. 1994, 2012 191

In IMS, this abend can occur if a program transfers to another
program using a transfer to transaction statement and the
transaction named on the statement is defined in the IMS system
definition, but the load module for the program is not in a library
available to the IMS message region.

In other environments, this abend can occur if the module is not in
a library defined in your link list, JOBLIB, or STEPLIB
concatenation sequence.

If the missing module name is ELACxxx, the NLS language code
identified by the last 3 characters of the module name is not
installed on the system. This language code was specified with the
targetNLS build descriptor option when the program was
generated.

If you try to run an EGL-generated program under Rational
COBOL Runtime and cannot load the module ELARSCNT, the
system abends with an 806.

LE Runtime Messages
Only the most frequently occurring LE runtime messages are listed in this section.
If you receive other runtime messages that start with IGZ or if you need a more
complete explanation of one of the messages, refer to the debugging manual for
your release of LE.

IGZ0033S An attempt was made to pass a
parameter address above 16 megabytes
to AMODE(24) program program-name.

Explanation: An attempt was made to pass a
parameter located above the 16-megabyte storage line
to a program in AMODE(24). The called program will
not be able to address the parameter.

Programmer response: If the calling program is
compiled with the RENT option, the DATA(24) option
may be used in the calling program to make sure that
its data is located in storage accessible to an
AMODE(24) program. If the calling program is
compiled with the NORENT option, the RMODE(24)
option may be used in the calling program to make
sure that its data is located in storage accessible to an
AMODE(24) program. Verify that no linkedit, binder or
genmod overrides are responsible for this error.

System action: The program was terminated

IGZ0064S A recursive call to active program
program-name in compilation unit
compilation-unit was attempted.

Explanation: COBOL does not allow reinvocation of
an internal program which has begun execution, but
has not yet terminated. For example, if internal
programs A and B are siblings of a containing program,
and A calls B and B calls A, this message will be
issued.

Programmer response: Examine your program to

eliminate calls to active internal programs.

System action: The program was terminated.

IGZ0066S The length of external data record
data-record in program program-name
did not match the existing length of the
record.

Explanation: While processing External data records
during program initialization, it was determined that
an External data record was previously defined in
another program in the run unit, and the length of the
record as specified in the current program was not the
same as the previously defined length.

Programmer response: Examine the current file and
ensure the External data records are specified correctly.

System action: The program was terminated.

IGZ0075S Inconsistencies were found in
EXTERNAL file file-name in program
program-name. The following file
attributes did not match those of the
established external file: attribute-1
attribute-2 attribute-3 attribute-4
attribute-5 attribute-6 attribute-7

Explanation: One or more attributes of an external file
did not match between two programs that defined it.

Programmer response: Correct the external file. For a
summary of file attributes which must match between
definitions of the same external file, see the COBOL

192 IBM Rational COBOL Runtime Guide for zSeries

Language Reference manual for your version of
COBOL.

System action: The program was terminated.

Common COBOL Abend Codes
Only the most frequently occurring abend codes are listed in this section. If you
receive another abend code or if you need a more complete explanation of one of
the messages, refer to the debugging manual for your release of LE.

User 4087 This is an LE abend code. If reason code is 7, the error could be
due to the region size not being large enough to run the COBOL
program.

Common IMS Runtime Messages
Only the most frequently occurring IMS runtime messages are listed in this section.
If you receive another runtime message that starts with DFS or if you need a more
complete explanation of one of the messages, refer to the IMS messages and codes
manual for your release of IMS.

DFS057I REQUESTED BLOCK NOT
AVAILABLE: blockname RC = reason
code

Explanation: The blockname is either the MOD or the
DOF name. If it is the DOF name, the first 2 bytes of
the name are the device type and features printed in
hexadecimal. Refer to the message format services
manual for your release of IMS for an interpretation of
these 2 bytes. If it is a MOD name, it will be the name
of a FormGroup.

User response: If a DOF name was specified, review
the values you specified for the mfsDevice,
mfsExtendedAttr, and mfsIgnore build descriptor
options, and compare them to the IMS system
definition for the terminal that had the problem.

If a MOD name was specified, ensure that you installed
the MFS control blocks into the correct library. If you
set the mfsUseTestLibrary build descriptor option to
YES, ensure that you used the /TEST MFS command. If
you set mfsUseTestLibrary to NO, ensure that your
system administrator has run the IMS online change
utility to copy in the new format definitions.

DFS064 NO SUCH TRANSACTION CODE

Explanation: This message is sent to a terminal when
the transaction code requested by the user is not
defined to IMS. An example of a situation that results
in this message is when a program uses a show
statement to transfer to a transaction that is not defined
to IMS. The form specified in the show statement is
written to the terminal, but when the user enters data,
the transferred-to transaction cannot be scheduled
because it is not defined to IMS.

User response: Either ensure the transaction code is
defined to IMS or change the show statement in the
transferring program to reference the correct IMS
transaction code.

DFS182 INVALID OR MISSING PARAMETER

Explanation: An IMS reserved word (for example,
LTERM) was used as a form name in a /FORMAT
command.

User response: If you need to use the /FORMAT
command to display this form, you need to change the
form name and generate the FormGroup and any
programs that use this form again.

DFS555I TRAN tttttttt ABEND S000,Uaaaa; MSG
IN PROCESS: (up to 78 bytes of data)
time stamp

Explanation: This message indicates that the
transaction running in IMS has ended abnormally.
Typical abend codes are shown below:

0778 IMS user abend, indicating that a ROLL
request was issued.

1602 Rational COBOL Runtime abend because a run
unit error occurred in a program that was
generated with the imsFastPath="YES" build
descriptor option.

1600 Rational COBOL Runtime abend because an
unrecoverable error occurred in situations
other than run unit errors for programs
generated with imsFastPath="YES".

User response: Press the PA1 or PA2 key to display
the error form that contains the error diagnostics that
describe the error.

DFS2082 RESPONSE MODE TRAN
TERMINATED WITHOUT REPLY

Explanation: Rational COBOL Runtime has ended the
logical unit of work for a program that was generated
with the imsFastPath="YES" build descriptor option.

Chapter 24. Codes from Other Products for z/OS Systems 193

User response: Press the PA1 key to display the error
form that contains the error diagnostics that describe
the error.

DFS2766I PROCESS FAILED

Explanation: IMS issues this message if Rational
COBOL Runtime ends the run unit for a transaction
program that was generated with imsFastPath="YES"
and run in an IMS fast-path region.

User response: Press the PA1 or PA2 key to display
the error form that contains error diagnostics that
describe the error. See Chapter 18, “Diagnosing
Problems for Rational COBOL Runtime on z/OS
Systems” for additional information.

(none) Logged off IMS and returned to the
VTAM sign-on screen without any
warning or error message being
displayed.

Explanation: One of the following might have
occurred:

v The program attempted to display a form with DBCS
or mixed data on a non-DBCS terminal or printer.

v The values specified for the mfsDevice,
mfsExtendedAttr, and mfsIgnore build descriptor
options do not match the IMS system definition for
the terminal that had the problem.

User response: Correct the program or build
descriptor options, generate the program and
FormGroup again, and then run the program again.

Common IMS Runtime Abend Codes
Only the most frequently occurring IMS abend codes are listed in this section. If
you receive another abend code or if you need a more complete explanation of one
of the abend codes, refer to the messages and codes manual for your release of
IMS.

IMS 259 A program has been compiled with the DATA(31) compile option
and is being run in a non-IMS/ESA environment. The program
should be recompiled with the DATA(24) compile option.

IMS 462 A program was scheduled in a message region, but the program
ended without successfully issuing a get unique for an input
message. This can occur if Rational COBOL Runtime detects an
error that would prevent the program from processing properly.
Examples of these errors are:
v The IMS PSB does not match the EGL PSB record definition.
v The print services program is missing.

IMS 778 A ROLL call has been issued by Rational COBOL Runtime because
of a run unit error or a catastrophic error in the IMS/VS
environment. The ROLL is issued to prevent further scheduling of
the program in error. IMS displays message DFS555I indicating
that abend 778 has occurred. The Rational COBOL Runtime error
message panel can be displayed by pressing PA1.

Based on your build descriptor options and the JCL for your
message region, additional diagnostic information might be
provided on an error diagnostic message queue, in the IMS log, or
in ELAPRINT. See “Controlling Error Reporting in IMS
Environments” on page 140 for additional information.

Note: Press PA2 if PA1 does not cause the Rational COBOL
Runtime error form to display.

IMS 1008 A program that was running as a BMP and that obtained access to
fast-path databases did not issue a SYNC or CHKP call at the end
of the job step. You can force the CHKP call to occur by:

194 IBM Rational COBOL Runtime Guide for zSeries

v Using the sysLib.commit() system function in a batch-oriented
BMP

v Ensuring that the transaction-oriented BMP ends with an
endOfFile (QC status) for the file being used for input from the
IMS message queue

IMS 3042 Access to DB2 cannot be obtained. Possible causes of this are:
v The terminal ID is not defined to DB2.
v The DB2 plan is not valid or access to the DB2 plan cannot be

obtained.

If the program was being run as a BMP, see Figure 21 on page 115
for sample JCL.

Common CICS Runtime Messages
Only the most frequently occurring CICS runtime messages are listed in this
section. If you receive another CICS runtime message that starts with DFH or if
you need a more complete explanation of one of the messages, refer to the CICS
messages and codes manual for your release of CICS.

DFHAC2016 date time applied Transaction tranid
cannot run because program
program-name is not available.

Explanation: The transaction tranid cannot be run
because the initial program for the transaction is not
available. This could occur because the transaction is
defined, but the program is not defined or is not in a
library in the DFHRPL concatenation.

User response: Have your system administrator check
the RDO PROGRAM entries or ensure that CICS
autoinstall is enabled for programs. Be sure the
program is in a library in the DFHRPL concatenation.

DFHAC2206 time applied Transaction tranid has
failed with abend abcode. Resource
backout was successful.

Explanation: The transaction tranid has ended
abnormally with abend code abcode. abcode is either
an CICS transaction abend code or a user abend code.

User response: If the user abend code starts with
ELA, see “CICS Environments” on page 185. If it is an
CICS abend code, see “Common CICS Abend Codes”
to see if it is included there. If not, refer to the CICS
messages and codes manual for your release of CICS.

Common CICS Abend Codes
Only the most frequently occurring CICS abend codes are listed in this section. If
you receive another CICS abend or if you need a more complete explanation of
one of the abend codes, refer to the CICS messages and codes manual for your
release of CICS.

Depending on your diagnostic control options, information might be available on
an error destination queue or in an CICS journal. For more information, see
“Controlling Error Reporting in CICS” on page 140.

ADCA An error occurred while processing a DL/I request. In addition to
looking for the information provided by CICS, look for messages
or abends from DL/I.

ADLD A program isolation deadlock occurred and a transaction was
selected for an abend. For information on using the
dliVar.cicsRestart system variable, or for information on designing
restartable transactions, see the EGL Language Reference.

AEY9 Access to DB2 cannot be obtained. This occurs if DB2 is not
running.

AFCY A transaction was purged when a deadlock occurred because a file
is defined with LSRPOOLID not equal to NONE in the FCT, and

Chapter 24. Codes from Other Products for z/OS Systems 195

one function within a program has performed a get next against a
file and another function requested an update or add to the same
file (or its alternate index) without ending the get next. Change the
LSRPOOLID to NONE, or change the program design to end the
get next before the update or add is requested.

APCT A requested module cannot be located in the program definitions
or in the program library.

ASRA A program check occurred. Some of the reasons this can occur for
an EGL program are as follows:
v Incorrectly linked Rational COBOL Runtime modules.

If register 1 contains ELA1, see the information for ELA1 in
“CICS Environments” on page 185.

v Data not initialized or data initialized to incorrect values.
If the error occurred as a result of a data exception, see the
explanation for "System 0C7" in “Common System Abend Codes
for All Environments” on page 191.

ATDD The program attempted to process a transient data queue that is
disabled. This can occur for a program file associated with a
transient data queue or for the transient data queue used for error
diagnostic information.

AXFQ The most common cause is the result of INBFMH not being
specified equal to ALL in the profile associated with the CICS
mirror program (CPMI).

Note: CICS users that receive abend codes ADLD, ADCP, AKCT, or D106 might
see four question marks in place of the CICS abend code for the resulting
Rational COBOL Runtime message. The CSMT console log contains the true
CICS abend code that was issued.

COBOL Abends under CICS
1009 A program has a dynamic storage requirement greater than 64KB, but was

compiled with the DATA(24) compiler option. Compile the module again
with the DATA(31) compiler option.

1029 One of the following situations occurred:
v A PROGRAM entry for a program attached through a COBOL dynamic

call is not found and CICS autoinstall is not enabled for programs
v The module being invoked cannot be found in the CICS region program

library search string

Additional information can be retrieved by entering transaction CEBR on
the terminal where the error occurred.

196 IBM Rational COBOL Runtime Guide for zSeries

Part 6. Appendixes

© Copyright IBM Corp. 1994, 2012 197

198 IBM Rational COBOL Runtime Guide for zSeries

Appendix. Rational COBOL Runtime Messages

This section describes a series of messages that are given by Rational COBOL
Runtime.

Message Format
Each message consists of a message identifier (for example, ELA00023P) and
message text. The text is a short phrase or sentence describing the error condition.

The message identifier consists of three fields: prefix, message number, and type
code. The format of the message identifier is xxxnnnnnt, where:

xxx Message prefix, as follows:

ELA These runtime messages can occur when your program stops, ends
with an error, or requires special attention.

FZE These runtime messages can occur when using the installation and
print utilities FZEZREBO and FZETPRT that are provided with
Rational COBOL Runtime

PRM These messages can occur when you are using the parameter
group utility.

nnnn Message number associated with the error condition that caused the
message to be displayed.

t Type code, as follows:

I Information
Indicates a minor error, such as a move from a field that is not
initialized, or provides you with general information about the
process you are working on. Processing continues

A Action
Indicates that you must take some specific action before the
process can continue (for example, a YES or NO response might be
required). Processing continues after you complete the required
action.

P Problem Determination
Indicates that a problem condition exists that requires diagnosis.
Processing ends when this type of message is issued. If the
problem determination message text includes a return code, see
Chapter 22, “Common System Error Codes for z/OS Systems,” on
page 167 for an explanation of the return code:

S System Action
Indicates that a system error occurred requiring you to take some
action. These messages appear in English.

The message text might contain one or more inserts. When the message is
displayed an insert is used to fill in names, constants, return codes, and so forth.
The format of the message insert is %xxyzz, where:

xx Number of the insert

y C, D, or X. These letters represent the following:

© Copyright IBM Corp. 1994, 2012 199

C Characters (usually a name)

D Decimal numbers (usually a length, record count, or error count)

X Hexadecimal numbers (usually a return code)

zz Length of the insert

In this manual you see messages listed like this:
ELA00023P Call to DataTable program %01C07 was not successful

If you receive this message on your system, the insert is automatically converted.
For example, if there is a problem with DataTable program TABLNAM, the error is
displayed on your system like this:
ELA00023P Call to DataTable program TABLNAM was not successful

TABLNAM is the first insert of the message (%01) and is in character format (C)
and is seven characters long (7).

ELA Messages

ELA00002P IBM Rational COBOL Runtime is
required for program %01C08.

Explanation: The generated COBOL program is not
compatible with the installed version of Rational
COBOL Runtime.

Rational COBOL Runtime ends the program with a
user abend.

User response: Verify that the latest maintenance has
been applied. You can find the latest maintenance level
in the technote located at the following website:

http://www-01.ibm.com/support/docview.wss?
uid=swg21444221

If the maintenance level is current, verify the
maintenance is applied to the correct load module
library. To determine the maintenance level, locate the
ELARSCNT load module and scroll to the right of the
module name to view the PTF associated with the
module. PTF numbers begin with UK. Make sure that
you are looking at the correct load module.

v If the PTF number does not match the minimum
required PTF, install at least the minimum required
PTF level.

v If the PTF number matches the minimum required
PTF level:

– Verify that you are pointing to the correct
SELALMD load module library

– For CICS: Verify that the ELARSCNT load
module that the maintenance has been applied to
is the same module that is being used by CICS.
Note that a new copy must be created to pick up
new load module versions.

ELA00003P PCB %01D03 DL/I error, function =

%02C04, status code = %03C02

Explanation: The program control logic attempted a
DL/I call to a teleprocessing PCB and received an error
status code from IMS on the call. The message specifies
the PCB that was used on the call (0 is the I/O PCB, 1
is the modifiable alternate PCB, and 2 is the express
modifiable alternate PCB). The message also specifies
the function code and the status code. For ISRT calls,
the message is accompanied by message ELA00066I,
which displays the first 255 bytes of the DL/I I/O area.

The run unit ends. If the ELASNAP data set is
allocated, Rational COBOL Runtime issues a SNAP
dump for all status codes other than AI.

User response: Look up the status code in the IMS
messages and codes documentation for your system.

ELA00005A Date entered is not valid for defined
date format %01C10

Explanation: Data entered into a form field defined
with a dateFormat property either does not meet the
requirements of the format specification, or the month
or day of the month is not valid.

It is not necessary to enter the separator characters
shown in the message, but if they are omitted, enter
leading zeros. For example, if the date format is
MM/DD/YY, you can enter 070491.

User response: Enter the date in the format shown in
the message.

ELA00007P File OPEN error on file %01C08, file
status = %02C08

Explanation: The specified file did not open
successfully.

200 IBM Rational COBOL Runtime Guide for zSeries

The format of the file status depends on the file type.

For SEQ files, the file status is the 2-character COBOL
status code followed by six zeros.

For VSAM files, the file status is composed of the
2-character COBOL status code followed by the VSAM
return code (two characters), VSAM function code (one
character), and the VSAM feedback code (three
characters). The VSAM codes could be blank if the file
OPEN was not completed.

For VSAMRS files, the file status is composed of the
2-character ACB (access control block) return code in
hexadecimal format followed by six zeros.

The run unit ends.

User response: First see the tables of common COBOL
and VSAM status codes in the Chapter 22, “Common
System Error Codes for z/OS Systems,” on page 167. If
the codes in the message are not listed in the tables,
refer to the COBOL programming language reference
and VSAM administration guide for your system for a
definition of other file status and VSAM codes. Also
look for system error messages pertaining to the
specified DD name or DLBL name. Correct the error
and run the program again.

ELA00008P File CLOSE error on file %01C08, file
status = %02C08

Explanation: The specified file did not close
successfully, and the run unit ends.

The format of the file status depends on the file type.

For SEQ files, the file status is the 2-character COBOL
status code followed by six zeros.

For VSAM files, the file status is composed of the
2-character COBOL status code followed by the VSAM
return code (two characters), VSAM function code (one
character), and the VSAM feedback code (three
characters).

For VSAMRS files, the file status is composed of the
2-character ACB (access control block) return code in
hexadecimal format followed by six zeros.

The run unit ends.

User response: First see the table of common COBOL
and VSAM status codes in the Chapter 22, “Common
System Error Codes for z/OS Systems,” on page 167. If
the codes in the message are not listed in the tables,
refer to the COBOL programming language reference
and VSAM administration guide for your system for a
definition of other file status and VSAM codes. Also
look for system error messages pertaining to the DD
name. Correct the error and run the program again.

ELA00009P Overflow occurred because the target
item is too short

Explanation: The target of a move or arithmetic
assignment statement is not large enough to hold the
result without truncating significant digits. If the
program logic does not handle the overflow exception
that occurred, then the program ends.

In CICS environments, Rational COBOL Runtime issues
a dump based on options selected using the diagnostic
controller utility.

In all z/OS environments, the Rational COBOL
Runtime issues a SNAP dump if the ELASNAP data set
is allocated.

User response: Have the application developer do one
of the following:

v Increase the number of significant digits in the target
data item

v If the program specifies the property
V60ExceptionCompatibility=YES, define the
program logic to handle the overflow condition by
using sysVar.handleOverflow and
sysVar.overflowIndicator.

v If the program specifies (or defaults to) the property
V60ExceptionCompatibility=NO, define the program
logic to include a try ... onException block that can
catch overflow exceptions.

ELA00014P A replace was attempted without a
preceding get for update on %01C18

Explanation: A replace was attempted for a record
that has not been successfully read by a get forUpdate
or an open forUpdate statement. The read for update
might have been lost as the result of a commit or
rollback or as the result of a converse statement in a
segmented program.

The run unit ends.

User response: Ensure that the replace statement and
the corresponding get forUpdate or open forUpdate
correctly use the same record variable name or
resultSetID.

Also make sure that the sequence of statements is
appropriate. To step through the program, you can use
the EGL debugger or (for CICS-based programs) CEDF.

ELA00015P READ/WRITE error for file %01C08, file
status = %02C08

Explanation: An I/O operation was not successful for
the specified file. Program processing ends on any
nonzero status code if the I/O statement is not in a try
block; and ends on a hard error if the I/O statement is
in a try block when vgVar.handleHardIOErrors is set
to 0.

The format of the file status depends on the file type.

Appendix. Rational COBOL Runtime Messages 201

For SEQ files, the file status is the 2-character COBOL
status code followed by six zeros.

For VSAM files, the file status is composed of the
2-character COBOL status code followed by the VSAM
return code (two characters), VSAM function code (one
character), and the VSAM feedback code (three
characters).

The run unit ends.

In all z/OS environments, Rational COBOL Runtime
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: First see the tables of common COBOL
and VSAM status codes in the Chapter 22, “Common
System Error Codes for z/OS Systems,” on page 167. If
the codes in the message are not listed in the tables,
refer to the COBOL programming language reference
and VSAM administration guide for your system for a
definition of the other file status and VSAM codes. Also
look for system error messages pertaining to the
specified DD name. Correct the error and run the
program again.

ELA00016P %01C08 error for file %02C08, %03C44,
file status = %04C08

Explanation: An I/O operation was not successful for
the specified file. Program processing ends on any
nonzero status code if the I/O statement is not in a try
block; and ends on a hard error if the I/O statement is
in a try block when vgVar.handleHardIOErrors is set
to 0.

The message identifies the VSAM operation that was
not successful, the EGL file name associated with the
record, the system resource name, and the file status.
The file status is composed of two zeros followed by
the VSAM return code (two characters), VSAM function
code (one character), and the VSAM feedback code
(three characters).

The run unit ends.

In all z/OS environments, Rational COBOL Runtime
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: First see the tables of common VSAM
status codes in the Chapter 22, “Common System Error
Codes for z/OS Systems,” on page 167. If the codes in
the message are not listed in the tables, refer to the
VSAM administration guide for your system for a
definition of other VSAM codes. Also look for system
error messages pertaining to the specified system
resource. Correct the error and run the program again.

ELA00021I An error occurred in program %01C08
on statement number %02D06

Explanation: An error occurred in the specified
program on the specified statement. The actual error

that occurred is identified in the messages following
this message.

User response: Correct the statement, and generate
the program again.

ELA00022P Form group format module %01C08
could not be loaded

Explanation: The specified FormGroup format module
could not be loaded. The module is a generated object
module linked as a program that contains tables that
describe the format and constant fields for text forms in
a FormGroup. The module name is the FormGroup
alias (or a variation to conform with length and
character restrictions) followed by the characters FM.

If the format module name uses the format ELAxxxFM,
where xxx is the language code, the definitions for the
Rational COBOL Runtime error forms could not be
loaded.

The run unit ends.

User response: Make sure that the specified program
was generated, compiled, and linked into a library
defined in the library search order.

For z/OS CICS, the search order includes the DFHRPL
data sets, and you should verify that the program has
been defined to the system.

For IMS/VS environments, the search order includes
the STEPLIB and JOBLIB data sets

ELA00023P Call to DataTable program %01C08 was
not successful

Explanation: A dynamic COBOL call to the specified
DataTable program was not successful. The run unit
ends.

User response: Make sure that the specified program
was generated, compiled, and linked into a library
defined in the library search order.

For z/OS CICS, the search order includes the DFHRPL
data sets. Verify that the program has been defined to
the system. Also ensure that the program was
generated with the data="31" build descriptor option.

For IMS/VS, IMS BMP, or z/OS batch, the search order
includes the STEPLIB and JOBLIB data sets.

If the program named in the messages is ELACxxx or
ELAYYNx (wherexxx and x are the NLS identifiers),
verify that the customization JCL in job ELACJxxx has
been run. Also verify that the appropriate language
(indicated by xxx or x) has been installed.

202 IBM Rational COBOL Runtime Guide for zSeries

ELA00024P Conversion table %01C08 could not be
loaded

Explanation: Either the specified conversion table
program could not be loaded or the program that was
loaded is not a Rational COBOL Runtime conversion
table.

The run unit ends.

User response: Verify that the correct conversion table
name was specified in the generation-time linkage
options part; that a correct conversion table has been
moved into the system variable
sysVar.callConversionTable at run time; or that a
correct conversion table has been specified when using
the sysLib.convert() system function. For more
information, see "callConversionTable" in the EGL
online help system.

If the conversion table was properly specified in the
program, make sure that the table program was
generated, compiled, and linked into a library defined
in the library search order.

For z/OS CICS, the search order includes the DFHRPL
data sets. Verify that the program has been defined to
the system. Also ensure that the program was
generated with the data="31" build descriptor option.

For IMS/VS, IMS BMP, or z/OS batch, the search order
includes the STEPLIB and JOBLIB data sets.

If the conversion table program is defined in the load
library, verify that the program is using either a
conversion table shipped with Rational COBOL
Runtime or a table created using the conversion table
format. For information on creating a custom
conversion table, see “Creating a custom conversion
table” on page 22. For more information on conversion
tables in general, see "Data conversion" in the EGL
Generation Guide.

ELA00026P A calculation caused a maximum-value
overflow

Explanation: During a calculation, an intermediate
result exceeded the maximum value. The maximum
value is based on the definition of the target variable,
which can be up to either 18 or 31 significant digits
based on the value of the maxNumericDigits build
descriptor option. Maximum value overflow also occurs
when division by zero occurs. This error can only occur
when you set the checkNumericOverflow build
descriptor option to YES. If the program logic does not
handle the overflow exception that occurred, then the
program ends.

The run unit ends.

In CICS environments, Rational COBOL Runtime issues
a dump based on options selected using the diagnostic
controller utility.

In all z/OS environments, Rational COBOL Runtime

issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Correct the program logic in one of the
following ways:

v Increase the number of significant digits in the target
data item

v If the program sets the V60ExceptionCompatibility
property to yes, define the program logic to handle
the overflow condition by using
VGVar.handleOverflow and
sysVar.overflowIndicator.

v If the program sets (or defaults) the
V60ExceptionCompatibility property to NO, define
the program logic to include a try ... onException
block that can catch overflow exceptions.

ELA00027P The data on a character-to-numeric move
is not valid

Explanation: The statement in error involves a move
from a character to a numeric data item. The character
data item contains nonnumeric data.

The run unit ends.

In all z/OS environments, Rational COBOL Runtime
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Change the program to ensure that the
source operand contains valid numeric data.

ELA00029P Transfer to %01C08 was not successful

Explanation: The transfer to another program was not
successful. Usually, the program being transferred to
could not be found.

The run unit ends.

User response: Make sure that the program was
generated, compiled, and linked into a library defined
in the library search order.

For z/OS CICS, the search order includes the DFHRPL
data sets. Verify that the program has been defined to
the system. Also ensure that the program was
generated with the data="31" build descriptor option.

For IMS/VS, IMS BMP, or z/OS batch, the search order
includes the STEPLIB and JOBLIB data sets.

ELA00031P Call to %01C08 was not successful

Explanation: A dynamic call to the specified program
failed, ending the run unit.

User response: Make sure that the program was
generated, compiled, and linked into a library defined
in the library search order.

For z/OS CICS, the search order includes the DFHRPL
data sets. Verify that the program has been defined to
the system. Also ensure that the program was

Appendix. Rational COBOL Runtime Messages 203

generated with the data="31" build descriptor option.

For IMS/VS, IMS BMP, or z/OS batch, the search order
includes the STEPLIB and JOBLIB data sets.

ELA00032P Called program %01C08 received a
parameter list that is not valid

Explanation: A call to the specified program was not
successful for one of the following reasons:
v The calling program passed too many or too few

parameters.
v Different values are in the linkage options part,

callLink element, parmform property for the called
and calling programs.

v The parmform value COMMDATA was specified for
the call, and the COMMAREA passed has a different
length than the length expected by the called
program.

If the called program is a remote program running on
CICS, a CICS abend occurs. Because the COMMAREA
is too small, the called program cannot notify the
calling program of the error.

In all other cases, the run unit ends.

In CICS environments, Rational COBOL Runtime issues
a dump based on options selected using the diagnostic
controller utility.

In all z/OS environments, Rational COBOL Runtime
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Verify that the argument list in the call
statement matches the parameter list for the program
being called, and then generate the called and calling
program with the same parmform value for the
callLink element of the linkage options part.

ELA00033P Call to program %01C08 returned
exception code %02D05.

Explanation: An exception code was returned on a
call to the specified program, indicating that one of the
arguments passed to the program was not valid. The
run unit ended because the call was not in a try block.

User response: Place the call statement in a try block
and make sure that all the passed arguments are valid.

ELA00034P Program %01C08 was declared as a main
program and cannot be called

Explanation: The specified program was not declared
as a called program.

The run unit ends.

In CICS environments, Rational COBOL Runtime issues
a dump based on options selected using the diagnostic
controller utility.

In all z/OS environments, Rational COBOL Runtime
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Declare the program as a called
program.

ELA00035A Data type error in input - enter again

Explanation: The data in the first highlighted field is
not valid numeric data. The field was defined as
numeric.

User response: Enter only numeric data in this field,
or press a validation bypass key to bypass the
validation check. In either situation, the program
continues.

ELA00036A Input minimum length error - enter
again

Explanation: The data in the first highlighted field
does not contain enough characters to meet the
required minimum length.

User response: Enter enough characters to meet the
required minimum length, or press a validation bypass
key to bypass the validation check. In either situation,
the program continues.

ELA00037A Input not within defined range - enter
again

Explanation: The data in the first highlighted field is
not within the range of valid data defined for this item.

User response: Enter data that conforms to the
required range, or press a validation bypass key to
bypass the validation check. In either situation, the
program continues.

ELA00038A Table edit validity error - enter again

Explanation: The data in the first highlighted field
does not meet the validatorDataTable requirement
defined for the variable field.

User response: Enter data that conforms to the
validatorDataTable requirement, or press a validation
bypass key to bypass the validation check. In either
situation, the program continues.

ELA00039A Modulus check error on input - enter
again

Explanation: The data in the first highlighted field
does not meet the modulus check defined for the
variable field.

User response: Enter data that conforms to the
modulus check requirements, or press a validation
bypass key to bypass the validation check. In either
situation, the program continues.

204 IBM Rational COBOL Runtime Guide for zSeries

ELA00040A No input received for required field -
enter again

Explanation: No data was typed in the field
designated by the cursor. The field is required.

User response: Enter data in this field, or press a
validation bypass key to bypass the validation check.
Blanks or nulls do not satisfy the data input
requirement for any type of field. In addition, zeros do
not satisfy the data input requirement for numeric
fields. The program continues.

ELA00041P Property msgTablePrefix was not
specified for a program: Message
%01C04, NLS code %02C03

Explanation: The program tried to display a message
from the message table using the
converseLib.validationFailed() system function.
However, the program does not specify a value for the
msgTablePrefix property.

The run unit ends.

User response: Do any of the following:
v Assign a valid value to the msgTablePrefix property

and generate the program again.
v Change the program to avoid using the

converseLib.validationFailed() system function and
then generate the program again.

v Remove the user message number from the form
field message properties and generate the program
and FormGroup again.

ELA00042P The expected number of inserts for
message %01C08, NLS code %02C03 was
not received

Explanation: The expected number of variable inserts
for an Rational COBOL Runtime message did not
match the number received. The message text is in the
language-dependent message DataTable program,
ELACxxx, where xxx is the language code.

The inserts show the original error message number
that occurred and the language code being used.
Message ELA00163P shows the original error message
number that occurred and the message inserts that
would have been displayed for that message.

The run unit ends.

User response: Correct the problem identified by the
original message.

If the language-dependent message DataTable was
modified, correct the modified message so that the
inserts are the same as the inserts defined in the default
message DataTable that was shipped with Rational
COBOL Runtime.

ELA00043P %01C08, %02C03

Explanation: The Rational COBOL Runtime message
DataTable program ELACxxx (where xxx is the
language code) did not contain a runtime message.

The inserts show the original error message number
that occurred and the language code being used.
Message ELA00163P shows the original error message
number that occurred and the message inserts that
would have been displayed for that message.

The run unit ends.

User response: Correct the problem identified by the
original message.

If the language-dependent message DataTable was
modified, verify that the message numbers in the
modified DataTable match the message numbers in the
message DataTable as shipped in the product. Also,
verify that the program loaded is at the same
maintenance and release level as the default message
DataTable shipped with Rational COBOL Runtime.

ELA00044P Message %01C08, NLS code %02C03, not
found

Explanation: The Rational COBOL Runtime message
DataTable program ELACxxx (where xxx is the NLS
code) did not contain a runtime message.

The inserts show the original error message number
that occurred and the NLS language code that was
being used. The message is accompanied by message
ELA00163P, which shows the original error message
number that occurred and the message inserts that
would have been displayed for that message.

The original error message that occurred determines if
(and how) the program ends and if a SNAP dump is
issued.

User response: Correct the error identified by the first
message insert.

If the message DataTable was modified, check that the
message numbers in the modified DataTable match the
message numbers in the default message DataTable
shipped with Rational COBOL Runtime. Also, check
that the program loaded is at the same maintenance
and release level as the default message DataTable
shipped with Rational COBOL Runtime.

ELA00045P Error reading message %01C08, NLS
code %02C03, status %03C08

Explanation: The user message file or database did
not contain a user-defined message for the language
associated with the language code. Message files and
databases are used only in COBOL programs generated
using CSP/370 Runtime Services Version 1 Release 1.

The format of the message ID is as follows:
v Positions 1-3 = User message file

Appendix. Rational COBOL Runtime Messages 205

v Positions 4-8 = Message number

The status code varies depending on the type of user
message file or database being used:
v For VSAM, status is eight characters. The first two

bytes of code are either 08 (to specify a relative
message within a record is not used) or 12 (to specify
a record was not found in the VSAM file). The
remaining six bytes of the status code are the VSAM
return code (two characters), function (one character),
and feedback code (three characters), all in decimal
format. Refer to the VSAM administration guide for
your system for a definition of the VSAM codes.

v For DB2, status is the 4-character SQL code. Refer to
the DB2 manuals for your system for a description of
the SQL code.

v For DL/I, status is the 2-character DL/I status code.
Refer to the IMS messages and codes manual for
your system for a description of the specified status
code.

v In the IMS/VS environment, the transaction (logical
unit of work) ends and processing continues with the
next message.

In all other environments, the run unit ends.

User response: Make sure that the message is defined
in the program message file in one of two ways:
v Convert the message file to an EGL message

DataTable. Generate the program and the message
DataTable again using EGL COBOL generation.

v If a message database is being used, add or replace
the message in the message database using the Cross
System Product/370 Runtime Services Version 1
Release 1 message database utility.

ELA00046P Call to print services program %01C08
was not successful

Explanation: A dynamic COBOL call to the specified
print services program was not successful.

The run unit ends.

User response: Make sure that the program was
generated, compiled, and linked into a library defined
in the library search order.

For z/OS CICS, the search order includes the DFHRPL
data sets. Verify that the program has been defined to
the system. Also ensure that the program was
generated with the data="31" build descriptor option.
In addition, verify that the customization job,
ELACJCIC has been run.

For IMS/VS, IMS BMP, or z/OS batch, the search order
includes the STEPLIB and JOBLIB data sets.

ELA00047P Message %01D04 was not found in
message table program %02C07

Explanation: A user message could not be found in
the program message DataTable.

In all z/OS environments, the Rational COBOL
Runtime issues a SNAP dump if the ELASNAP data set
is allocated.

The run unit ends.

User response: Either add the message to the
DataTable or modify the program to use a message that
is defined in the message DataTable.

ELA00050A Significant digits for field exceeded -
enter again

Explanation: The user entered data into a numeric
field that was defined with decimal places, a sign,
currency symbol, or numeric separator edits. The
number of significant digits that can be displayed
within the formatting criteria was exceeded by the
input data; the number entered is too large. The
number of significant digits cannot exceed the field
length, minus the number of decimal places, minus the
places required for formatting characters.

User response: Enter a number with fewer significant
digits.

ELA00051P Form %01C08 was not found in
FormGroup %02C06

Explanation: The specified form name is not in the
FormGroup.

The run unit ends.

User response: Generate the FormGroup and the
program again.

ELA00057P Delete attempted without preceding
update on record %01C18

Explanation: This error occurs in these cases:

v A delete statement was issued against a record that
was not successfully read for update

v A delete statement is associated with a specific get
statement, but a different get statement was used to
select the record.

The read for update might have been cancelled as the
result of a converse statement in a segmented program.

The run unit ends.

User response: Make sure that in the get, open, and
delete statements, the program correctly used record
names or a resultSetID.

Also make sure that the sequence of statements is
appropriate. To step through the program, you can use

206 IBM Rational COBOL Runtime Guide for zSeries

the EGL debugger or (for CICS-based programs) CEDF.

ELA00061P DL/I error, function = %01C04, status
code = %02C02

Explanation: DL/I returned a status code in response
to the DL/I call for the current I/O statement and
either of the following occurred:
v There was no error routine specified for the I/O

statement.
v Both VGVar.handleHardIOErrors and

dliVar.handleHardDLIErrors were set to 0 (this
indicates that the program should end on abnormal
DL/I conditions), and the status code specified either
an abnormal condition, or a condition that was not
expected.

The status code in the message comes from the DL/I
PCB used for the DL/I call.

The run unit ends.

In CICS environments Rational COBOL Runtime issues
a dump based on options selected using the diagnostic
controller utility.

This is either a program error or a database definition
error.

User response: Do the following:
1. Locate the specified error code. Refer to the IMS

messages and codes manual for a description of the
specified status code.

2. Correct the error.
3. Generate the program again.

ELA00062P DL/I call overlaid storage area, record
%01C18

Explanation: A DL/I call read a block of data that was
larger than the record defined to hold the data. The
storage area immediately following the record buffer
was overlaid.

The run unit ends.

In CICS environments, Rational COBOL Runtime issues
a dump based on options selected using the diagnostic
controller utility.

In all z/OS environments, the Rational COBOL
Runtime issues a SNAP dump if the ELASNAP data set
is allocated.

User response: This is a program error. Define the
record so that its length matches the length of the
segment it represents and generate the program again.

ELA00063I PCB DB %01C08, segment %02C08, level
%03D02, options %04C04

Explanation: This message provides additional
diagnostic information for a database I/O error. The
PCB passed in the DL/I call contained the specified
information.

For unsuccessful DL/I I/O call, the segment name field
contains the last segment along with the path to the
requested segment that satisfied the call. When a
program is initially scheduled, the name of the
database might be put in the segment name field if no
segment is satisfied.

User response: Refer to message ELA00061P.

ELA00064I PCB key feedback area length %01D04

Explanation: This message provides additional
diagnostic information for a database I/O error. The
PCB passed in the DL/I call contained the specified
key feedback length. This is the length of the
concatenated key of the hierarchical database path.

User response: Refer to message ELA00061P.

ELA00065I PCB key feedback area = %01C255

Explanation: This message provides additional
diagnostic information for a database I/O error. The
PCB passed in the DL/I call contained the specified
key feedback area.

The first 255 bytes are displayed. If necessary, because
of the line and data lengths, the message wraps around
to display all 255 bytes. The data is displayed as
character data in the message. The message is followed
by two lines that give the hexadecimal value under
each character.

User response: Refer to message ELA00061P.

ELA00066I DL/I I/O area = %01C255

Explanation: This message provides additional
diagnostic information for a hard DL/I I/O error. The
message displays the contents of the DL/I I/O area.

The first 255 bytes are displayed. If necessary, because
of the line and data lengths, the message wraps around
to display all 255 bytes. The data is displayed as
character data in the message. The message is followed
by two lines that give the hexadecimal value under
each character.

User response: This message is always accompanied
by another message (for example, ELA00003P or
ELA00061P) that specifies the error. See the explanation
and user response of the accompanying message.

Appendix. Rational COBOL Runtime Messages 207

ELA00067I DL/I SSA %01D02: %02C255

Explanation: This message provides additional
diagnostic information for a DL/I I/O error. The
message displays the contents of a segment search
argument (SSA) for the DL/I call. The first message
insert gives the number of the SSA. The second insert
gives the first 255 bytes of the SSA.

If necessary, because of the line and data lengths, the
message wraps around to display all 255 bytes. The
data is displayed as character data in the message. The
message is followed by two lines that give the
hexadecimal value under each character.

This message is repeated once for each SSA used in the
DL/I call.

User response: Refer to message ELA00061P.

ELA00068P DL/I variable segment length is not
valid, segment %01C08

Explanation: A DL/I segment I/O area is shorter than
the segment returned in a DL/I retrieval, or the
computed segment length on an add or replace
statement is not valid.

In the case of a get, get forUpdate, or get next
statement, the BYTES parameter in the DBD is greater
than the length of the record defined to EGL.

In the case of an add or replace statement, the program
has erroneously set the length of the segment. If this
error occurs for a path call, the DL/I I/O area shown
in message ELA00061I contains only segments before
the segment with the error. Because the length is in
error, the segment with the error cannot be moved to
the DL/I I/O area.

The run unit ends.

In CICS environments, Rational COBOL Runtime issues
a dump based on options selected using the diagnostic
controller utility.

In all z/OS environments, the Rational COBOL
Runtime issues a SNAP dump if the ELASNAP data set
is allocated.

User response: If the error occurred in a retrieval,
have the database administrator correct either the DBD
or the EGL record definition, and generate the program
again.

If the error occurred on an update, correct the logic
associated with calculating the length of the segment.
Generate the program again.

ELA00069P The value of an input variable is too
large for the target SQL column

Explanation: When running in VisualAge Generator
compatibility mode, a DECIMAL or PACF field in an
SQL record is defined as requiring an even-numbered

length for SQL purposes, but has a value that is too
large to be contained within the even-numbered length.

In the IMS/VS environment, the transaction (logical
unit of work) ends and processing continues with the
next message.

In all other environments, the run unit ends

In CICS environments, Rational COBOL Runtime issues
a dump based on options selected using the diagnostic
controller utility.

In all z/OS environments, the Rational COBOL
Runtime issues a SNAP dump if the ELASNAP data set
is allocated.

User response: Modify the program to ensure that
values that overflow the even-numbered length of the
field are detected and rectified before executing any
I/O statement that uses the SQL record, and that uses
the field as an input host variable in its SQL statement.

This condition is not detected in programs that have
the checkNumericOverflow build descriptor option set
to YES; instead the high-order digit of the value of the
field is truncated before being used in the SQL
statement.

ELA00070P %01C04 error, status code %02C02

Explanation: DL/I returned a status code other than
QC or AL in response to a CHKP (checkpoint) or ROLB
(rollback) DL/I call.

CHKP and ROLB calls are issued for the following
reasons:
v The program invokes the sysLib.commit() or

sysLib.rollback() system functions.
v The program ends abnormally and a PSB is active.
v The program causes a commit to be taken at a

converse statement, when reading an inputForm, or
because the synchOnTrxTransfer build descriptor
option is set to YES.

The status code in the message is taken from the I/O
PCB used with the DL/I call.

The run unit ends.

In all z/OS environments, the Rational COBOL
Runtime issues a SNAP dump if the ELASNAP data set
is allocated.

User response: Make a note of the message and notify
the system programmer. On z/OS systems, refer to the
IMS messages and codes manual for a description of
the status code.

208 IBM Rational COBOL Runtime Guide for zSeries

ELA00072P %01C18, set record position not
supported

Explanation: The set position indicator was on for a
DL/I segment record when a get next statement with a
user-modified SSA list was used with that record. The
set position indicator is not supported for DL/I calls
with modified SSA lists.

The run unit ends.

User response: Modify the program logic so that it
does not set the set position indicator for a segment
with a modified DL/I call.

ELA00073P SQL error, command = %01C08, SQL
code = %02D04

Explanation: The SQL database manager returned an
error code for an SQL I/O statement. Program
processing ends following an SQL request whenever
the SQLCODE in the SQL communications area
(SQLCA) is not 0, and either of the following is true:
v The I/O statement is not in a try block.
v The SQLCODE indicated a hard error and the system

variable vgVar.handleHardIOErrors was set to 0.

The message is followed by message ELA00074I which
displays the substitution variables associated with the
SQLCODE. (Those substitution variables are also
available to the program by way of the system variable
sysVar.sqlData.)

The run unit ends.

In CICS environments, Rational COBOL Runtime issues
a dump based on options selected using the diagnostic
controller utility.

In all z/OS environments, Rational COBOL Runtime
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Determine the cause of the problem
from the SQL code and the SQL error information.

Either correct the program or the database definition.
Refer to the appropriate database manager messages
and codes manual for information on the SQL code and
SQL error information.

ELA00074I SQL error message: %01C70

Explanation: This message accompanies message
ELA00073P when an SQL error occurs. It displays the
relational database manager error information returned
in the SQLCA field SQLERRM and is repeated as many
times as necessary to display the complete description.

User response: Use the information from this message
and ELA00073P to correct the error.

ELA00076P Invalid data is used in a
character-to-hexadecimal assignment or
comparison

Explanation: The current statement involves either a
move from a character data item to a hexadecimal data
item, or a comparison between a character data item
and a hexadecimal data item. The characters in the
character data item all must occur in the following set
for the move or compare to complete successfully:

a b c d e f A B C D E F 0 1 2 3 4 5 6 7 8 9

One or more of the characters in the character data
item is not in this set. This condition causes a program
error.

The run unit ends.

In CICS environments, Rational COBOL Runtime issues
a dump based on options selected using the diagnostic
controller utility.

In all z/OS environments, Rational COBOL Runtime
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Change the program to ensure that the
character data item contains valid data when the
character-to-hexadecimal move or compare operation
occurs. In text-form fields, you can use the isHexDigit
validation property to ensure that user input contains
only valid characters.

ELA00080A Hexadecimal data is not valid

Explanation: The data in the variable field identified
by the cursor must be in hexadecimal format. One or
more of the characters you entered does not occur in
the following set:

a b c d e f A B C D E F 0 1 2 3 4 5 6 7 8 9

User response: Enter only hexadecimal characters in
the variable field. The characters are left-justified and
padded with the character zero. Embedded blanks are
not allowed.

ELA00086P %01C18 - No active open or get for
update is in effect

Explanation: One of these cases applies:

v A get next statement cannot run because a related
open statement did not run previously in the same
program; or

v A replace or delete statement cannot run because a
related open, get for update, or get next for update
did not run previously in the same program.

All rows selected for retrieval or update are released
when a called program returns to the calling program.

Appendix. Rational COBOL Runtime Messages 209

The run unit ends.

User response: Make sure that in the second
statement (get next, replace, or delete), the program
correctly used a record variable name or resultSetID to
match the first statement (open or get).

Also make sure that the sequence of statements is
appropriate. To step through the program, you can use
the EGL debugger or (for CICS-based programs) CEDF.

ELA00093I An error occurred in program %01C08,
function %02C18

Explanation: An error occurred in the specified
function for the specified program. Other information
about the error is given in the messages that follow this
message.

If a function is not active, the second insert contains the
name of a section in the generated initialization or
ending logic of the program.

User response: Refer to the error messages following
this message to determine the cause of the error.

ELA00096P A data operand of type MBCHAR is not
valid

Explanation: An operand in a move or assignment
statement contains mixed double-byte and single-byte
data that is not valid.

The run unit ends.

In CICS environments, Rational COBOL Runtime issues
a dump based on options selected using the diagnostic
controller utility.

In all z/OS environments, Rational COBOL Runtime
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Verify that the data in MBCHAR
variables is valid before using the variable in a move or
assignment statement.

ELA00105I Error occurred at terminal %01C08, date
%02C08, time %03C08, user %04C08

Explanation: An error occurred at the specified logical
terminal on the specified date and time. This message
precedes any error diagnostic information routed to an
alternate error destination.

For a program running in z/OS batch environment, the
first insert is ********, which indicates that the terminal
identifier is not known.

For a batch program running in the IMS BMP or
IMS/VS environments, the first variable insert is
******** if the input message queue has not yet been
accessed, indicating that the terminal identifier is not
known.

For the IMS BMP or z/OS batch environments, the last

insert (user) is the job name from the JOB statement in
the JCL used to run the program.

For z/OS CICS and IMS/VS environments, the last
insert is only provided if sign-on security is active on
or provided in the system.

User response: Examine all error messages that follow
this message and precede the next occurrence of this
message. Use the information from these messages to
diagnose and correct the error.

ELA00106P Program %01C08 PSB does not match
Enterprise Generation Language PSB
definition

Explanation: The PCBs passed to the program at
program initialization time did not match the EGL
PSBRecord defined for the program. The number of
PCBs passed was less than the number of PCBs defined
in the EGL PSBRecord definition.

The run unit ends.

In CICS environments, Rational COBOL Runtime issues
a dump based on options selected using the diagnostic
controller utility.

In all z/OS environments, the Rational COBOL
Runtime issues a SNAP dump if the ELASNAP data set
is allocated.

User response: Either correct the EGL PSBRecord
definition and generate the program again, or correct
the IMS PSB and generate it again.

ELA00109P Input form must be form %01C08 rather
than form %02C08, for program %03C08

Explanation: The form received by the program is not
the form specified as the value of the inputForm
program property. This error occurs when the program
starts.

For the CICS environment, when another program
transfers to this program using the show statement, the
transferring program must specify the correct form
name on the show statement.

For the IMS/VS environment, the initial message
processed for the program must be the message input
descriptor (MID) for the first identified form. Instead,
the second identified form was received. Either another
program transferred to this program with the wrong
form, or the user did not use the /FORMAT command
to start the program.

The run unit ends.

User response: If the error occurred when the
program was started in the IMS environment, start the
program using the /FORMAT command. Otherwise,
ensure that the transferring program specifies the
correct form name on the show statement and that the

210 IBM Rational COBOL Runtime Guide for zSeries

receiving program specifies the correct value for the
inputForm property.

ELA00110P Shared DataTable %01C07 cannot be
updated

Explanation: The program modifies a DataTable that
was defined with the shared property set to YES.
Shared DataTables cannot be updated.

The run unit ends.

User response: Either set the shared property for the
DataTable to NO, or change the program to avoid
modifying the DataTable.

ELA00111P Length of input form %01C08 is not
valid

Explanation: The length of an input form received by
a program is not the length defined for the form in the
program.

The run unit ends.

User response: Use the same form definition when
generating both the program that receives the input
form and the program that issues the show statement.

ELA00114P A transfer to called program %01C08 is
not allowed

Explanation: A program cannot transfer to a called
program.

The run unit ends.

In CICS environments, Rational COBOL Runtime issues
a dump based on options selected using the diagnostic
controller utility. For CICS, this message can also occur
if the Rational COBOL Runtime program ELATSRTS
has been used to initiate a called program.

In all z/OS environments, Rational COBOL Runtime
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Replace the transfer to program
statement with a call statement.

ELA00115P Use of a transfer statement is invalid
because the receiving program (%01C08)
has an input form

Explanation: Only a show statement can transfer to a
program that requires an input form.

The run unit ends.

In CICS environments, Rational COBOL Runtime issues
a dump based on options selected using the diagnostic
controller utility.

In all z/OS environments, Rational COBOL Runtime
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Do either of these actions:

v Use a show statement to invoke the receiving
program indirectly

v Remove the inputForm property of the receiving
program. The program can converse the form after
receiving control.

ELA00118P Missing PSB for program %01C08

Explanation: An EGL PSB was specified for the
named program during definition. However, the
program ran as a z/OS batch job without specifying
the PSB parameter. This can happen if you do not use
the sample JCL created by EGL COBOL generation.

The run unit ends.

User response: If the program contains DL/I I/O or
other DL/I functions, change the runtime JCL to run
DL/I programs. If the program does not use DL/I,
remove the PSB name from the program definition.

ELA00119P Programs %01C07 and %02C07 are not
compatible

Explanation: A program started by a transfer to
program or call statement is not compatible with the
initial program in the transaction or job for one of the
following reasons:

v The program was generated for a different
environment.

v The program is a main Text UI program, and the
initial program is a main basic program (IMS/VS
only).

v The programs are both main Text UI programs, but
the spaSize, spaADF, or spaStatusBytePosition
build descriptor options specified at generation are
different (IMS/VS only).

The run unit ends.

User response: Change one or both programs to
conform to the restrictions for a transfer to program or
call statement.

ELA00120P sysLib.startTransaction not successful,
logical LTERM = %01C08, status code =
%02C02

Explanation: Common IMS status codes are as
follows:

QH Unknown output destination

A1 Unknown output destination

Both status codes indicate that the 8-character logical
terminal ID was not defined to the IMS system as
either a terminal or transaction.

The run unit ends.

Appendix. Rational COBOL Runtime Messages 211

User response: Follow these steps to correct the
problem:
1. Make sure that the transaction code field of the

record specified in vgLib.startTransaction() is
defined to the IMS system.

2. Review the program logic ensure that the
transaction code field is set correctly.

3. Refer to the IMS messages and codes manual for
your system for an explanation of status codes other
than the ones listed above.

ELA00121P sysLib.audit was not successful, logical
LTERM = %01C08, status code=%02C04

Explanation: The status code is the 2-character status
from the I/O PCB.

The run unit ends.

User response: Refer to the IMS messages and codes
manual for your system.

ELA00122P PCB for dliLib.AIBTDLI,
dliLib.EGLTDLI, or VGLib.VGTDLI call
not available

Explanation: The meaning varies depending on the
system function as follows:

v If the system function is dliLib.AIBTDLI(), the EGL
PCB name is not associated with any PCB in the PSB
being used by the program.

v If the system function is dliLib.EGLTDLI(), the EGL
PCB name is associated with a PCB number that
either exceeds the number of PCBs in the PSB being
used by the program or references a PCB that was
not passed to the program in the called parameter
list.

v If the system function is VGLib.VGTDLI(), the EGL
PCB number either exceeds the number of PCBs in
the PSB being used by the program or references a
PCB that was not passed to the program in the called
parameter list.

The error can also occur in the CICS environment if the
EGL PCB refers to the I/O PCB, a TP PCB, or a GSAM
PCB, none of which are available in CICS.

The run unit ends.

In CICS environments, Rational COBOL Runtime issues
a dump based on options selected using the diagnostic
controller utility.

In all z/OS environments, Rational COBOL Runtime
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Either modify the system function to
reference a valid PCB, or modify the PSB or called
parameter list definition to include the referenced PCB

ELA00123P Basic checkpoint used in
transaction-oriented BMP

Explanation: A program invoked the sysLib.commit()
system function while processing as a
transaction-oriented IMS BMP. The sysLib.commit()
system function is implemented as a basic checkpoint
(CHKP) function. In the transaction-oriented IMS BMP,
this resulted in a read of the message queue that
overlaid program storage. The updates to the database
have been committed.

This error can only occur if the program uses the
dliLib.AIBTDLI(), dliLib.EGLTDLI(), or
VGLib.VGTDLI() system functions to read the
message queue. The sysLib.commit() system function is
ignored if the program uses the get next statement to
read a serial record associated with the input message
queue.

The run unit ends.

Rational COBOL Runtime issues a SNAP dump if the
ELASNAP data set is allocated.

User response: Do not run the program as a
transaction-oriented IMS BMP. Alternatively, either
remove the use of the sysLib.commit() system function
or change the dliLib.AIBTDLI(), dliLib.EGLTDLI(), or
VGLib.VGTDLI() system function that reads the
message queue to a get next statement for a serial
record and use the resource associations part to
associate the serial record with the message queue.

ELA00125P Error number %01D04 is not valid

Explanation: The error handler was called with an
error number that it did not recognize. This is a
product error.

The run unit ends.

In CICS environments, Rational COBOL Runtime issues
a dump based on options selected using the diagnostic
controller utility.

In all z/OS environments, Rational COBOL Runtime
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Ensure that the generated COBOL
program has not been modified by generating the
program again. Afterwards, run the program again. If
the problem persists, do as follows:
1. Record the message number
2. Obtain the dump
3. Record the scenario under which this message

occurs
4. Obtain the COBOL source for the problem program
5. Use your electronic link with IBM Service if one is

available, or contact the IBM Support Center

212 IBM Rational COBOL Runtime Guide for zSeries

ELA00127P A requested function is not supported
for form %01C08, FormGroup %02C06

Explanation: A program requested a form function
that is not supported for the specified form and
FormGroup. The FormGroup was modified between
the time the FormGroup was generated and the time
the program was generated. Some functions that were
included for the form or FormGroup when the program
was generated were not specified for the FormGroup
when the FormGroup was generated. For example, a
helpForm or msgField might have been specified for
the form at the time the program was generated, but
were not present when the FormGroup was generated.

The run unit ends.

User response: Check the form properties and the
program, then generate the program again with the
genFormGroup build descriptor option set to YES.

ELA00128P Incompatible attributes for file =
%01C08

Explanation: A program is attempting to use a GSAM
file that is already opened for another program. The file
characteristics (record organization, record length, fixed
or variable length records, or key specification) are
defined differently for the two programs and the
definitions are not compatible.

If the file is EZEPRINT, the problem might be caused
by attempting to write forms that do not contain
double-byte characters followed by forms that do
contain any double-byte data.

The run unit ends.

User response: Define the file characteristics to be the
same in both programs or use a different file name for
one of the programs.

ELA00129I Form %01C08 was received

Explanation: Related messages give further details.

User response: Refer to the related error messages.

ELA00130P GSAM error, file = %01C08, function =
%02C04, status code = %03C02

Explanation: An I/O error occurred on an add, get
next, or close statement for a file associated with a
GSAM database. Program processing ends on a hard
status code if vgVar.handleHardIOErrors is set to 0, or
on any error status code if there is no try block
surrounding the I/O statement.

This message can also occur on an implicit OPEN or
CLSE call to the GSAM database. An implicit OPEN or
CLSE call occurs as a result of an EGL add or get next
statement. Program processing ends on a hard status
code if vgVar.handleHardIOErrors is set to 0, or on any
error status code if there is no try block for the add or

get next statement that caused the implicit OPEN or
CLSE call.

An AI status code for an implicit OPEN might be
caused by specifying a file name during EGL resource
association that is different from the DD name specified
in the GSAM DBD.

For an add, message ELA00066I accompanies this
message and provides the DL/I I/O area that was used
for the call.

The run unit ends. If ELASNAP is allocated, the
Rational COBOL Runtime issues a SNAP dump.

User response: Determine the cause of the I/O error
from the DL/I status code and either correct the
program or the database definition. Refer to the IMS
messages and codes manual for your system for an
explanation of the DL/I status code.

ELA00131P MSGQ error, file = %01C08, function =
%02C04, status code = %03C02

Explanation: An error occurred on a get next or add
statement for a file or a print statement for a print form
when the file or printer is associated with an IMS
message queue (I/O or TP PCB). Program processing
ends on a hard status code if
VGVar.handleHardIOErrors is set to 0, or on any error
status code if there is no try block surrounding the I/O
statement.

Common status codes are:

QH Unknown output destination (add, print, or
converse)

A1 Unknown output destination (add, print, or
converse)

A6 Output segment limit exceeded (add, print, or
converse)

FD Deadlock occurred (get next).

For an add, print, or converse, the listed status codes
specify that the 8-character system resource name
associated with the file or printer at generation or in
recordName.resourceAssociation or
converseVar.printerAssociation was not defined to the
IMS system as either a terminal or a transaction.

For an add, print, or converse statement, message
ELA00066I accompanies this message and shows the
DL/I I/O area that was used for the call.

The run unit ends. If ELASNAP is allocated, the
Rational COBOL Runtime issues a SNAP dump.

User response: If the output destination is not valid,
ensure that it is defined to the IMS system. Also review
the program logic to ensure that
recordName.resourceAssociation or
converseVar.printerAssociation, if used, are set

Appendix. Rational COBOL Runtime Messages 213

correctly. For an explanation of status codes other than
the ones listed above, refer to the IMS messages and
codes manual for your system.

ELA00132P Variable length %01D02 is not valid for
record %02C18

Explanation: The variable length record being written
to a GSAM file or a message queue has a length that is
greater than the maximum length defined for the
record structure. Either the lengthItem field contains a
value greater than the maximum record length or the
numElementsItem field contains a value that is greater
than the maximum number of occurrences specified.

The first message insert provides the length field that
was being used. The length is the total length being
written as follows:

v For a GSAM file, the length includes the 2-byte
length field itself,

v For a message queue, the length includes the 12-byte
header (length, ZZ field, transaction code) itself.

The second message insert provides the name of the
serial record being written to the GSAM file or the
message queue.

The run unit ends.

Rational COBOL Runtime issues a SNAP dump if the
ELASNAP data set is allocated.

User response: Modify the program to move a valid
value to the lengthItem field or to the
numElementsItem field.

ELA00134P I/O PCB conflict between programs
%01C08 and %02C08

Explanation: A program invoked using the call or
transfer to program statement accesses the I/O PCB as
a serial file. The initial program in the transaction is a
main Text UI program and the current program
accesses the I/O PCB. The control logic for a main Text
UI program cannot operate correctly when a program
that it invokes using the call or transfer to program
statements also accesses the I/O PCB.

The run unit ends.

User response: Modify the called or transferred-to
program so it does not access the I/O PCB.
Alternatively, call or transfer to the program from a
main basic program.

ELA00135P The program is not expecting an input
form

Explanation: Another program issued a show
statement that specified a form, but the receiving
program does not specify the inputForm property.

The run unit ends.

User response: Either change the invoking program to
avoid sending a form or change the receiving program
to specify an input form.

ELA00136P DL/I error occurred in work database
operation

Explanation: An error occurred during use of the
work database when it was implemented using DL/I.
This message is accompanied by additional DL/I
diagnostic messages, including ELA00061P, that provide
additional information about the error. Message
ELA00061P includes the DL/I function and status code.
Refer to the IMS messages and codes manual for your
system for a description of the status code.

The run unit ends.

If ELASNAP is allocated, the Rational COBOL Runtime
issues a SNAP dump.

User response: This is a database definition error or
an error in the definition of the work database PCB in
your IMS PSB. Record this information and any other
diagnostic messages, and notify the system
administrator.

ELA00137P SQL error occurred in work database
operation

Explanation: An error occurred during use of the
work database when it was implemented using SQL.
This message is accompanied by additional SQL
diagnostic messages, including ELA00073P, that provide
additional information about the error.

The run unit ends.

If ELASNAP is allocated, the Rational COBOL Runtime
issues a SNAP dump.

User response: Determine the cause of the problem
from the SQL code and the SQL error information in
related message ELA00074I, and correct the database
definition.

ELA00138P %01C08 was replaced in the middle of a
conversation

Explanation: The program was running in segmented
mode and ran a converse statement. However, the
program was replaced in the load library during user
think time (the time between writing the form to the
terminal and receiving the user's input).

The program conversation with the user started with
the original version of the program and cannot be
resumed.

The run unit ends.

In CICS environments, Rational COBOL Runtime issues

214 IBM Rational COBOL Runtime Guide for zSeries

a dump based on options selected using the diagnostic
controller utility.

User response: Run the program again.

ELA00139P MFS map program %01C06 and MFS
map %02C08 have different versions

Explanation: An MFS form services program
attempted to process a message input descriptor for an
MFS form that was generated at a different time than
the MFS form services program. Both the MFS form
services program and the form it works with must be
built in the same generation step.

This is probably a problem with the installation of
either the program or the MFS form after generation of
a FormGroup. One of the following might have
occurred:
v The MFS form services program might have been

compiled and linked without installing the MFS
forms, or vice versa.

v The MFS form might have been installed in an MFS
test library, but you did not enter an IMS /TEST
MFS command prior to starting the transaction.

v The MFS form might have been installed in the MFS
production library, and you entered a /TEST MFS
command prior to starting the transaction.

v The MFS form might have been used in a show
statement to transfer from another program. The
transfer-from program used a different FormGroup,
but the form name on the show statement is the
same as the inputForm name for the transfer-to
program.

In the IMS/VS environment, the transaction (logical
unit of work) ends and processing continues with the
next message. In the IMS BMP environment, the run
unit ends.

User response: Ensure that the same version of the
MFS form services program and the MFS control blocks
are installed in the correct libraries. If the show
statement and inputForm property are involved, ensure
that the transfer-from and transfer-to programs use the
same FormGroup.

ELA00140P Segmentation storage size discrepancy
for %01C08

Explanation: The size of the segmentation storage
record is not valid for the specified program.

Possible causes for the error include:

v The program is replaced in the load library in the
middle of a program conversation with the user

v The program issues a show statement, but the
receiving program expects an input form that has
different characteristics

v The program is segmented and issues a converse
statement when sysVar.transactionID contains a
transaction code, but that transaction code is

associated with a program that has no relationship to
the issuing program. If the sysVar.transactionID is
used to switch transaction codes, the new transaction
must start either the same program that was started
by the old transaction or the program that issued the
converse statement.

The run unit ends.

In CICS environments, Rational COBOL Runtime issues
a dump based on options selected using the diagnostic
controller utility.

In all z/OS environments, Rational COBOL Runtime
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Try the transaction again. If the
program works correctly, the error was caused by a
re-link in the middle of the conversation. If the error
still occurs, determine why there is a mismatch and
correct the situation that caused the error.

ELA00141P Data table %01C08 cannot be modified.
Delete %02D06 bytes.

Explanation: The program's attempt to modify a
shared DataTable would cause an increase in DataTable
size beyond the CICS limit, which is 65535 bytes.

The run unit ends.

User response: Either change the logic of the program
so that the DataTable is not modified or decrease the
size of the DataTable content by the specified number
of bytes.

ELA00142P Form %01C08 in group %02C06 not
supported on this device

Explanation: A form has been sent to a device using
IMS Message Format Services, but the device type does
not correspond to the list of screenSizes specified for
the form part or the combination of the mfsDevice,
mfsExtendedAttr, and mfsIgnore build descriptor
options that match the specified screen sizes

v A print form was sent to a destination that is defined
as a terminal in the IMS System Generation. The
destination is the system resource name specified for
EZEPRINT at generation or an override value loaded
into the converseVar.printerAssociation system
variable at run time. The message appears at the
terminal where the print form was directed, not at
the terminal that originated the transaction. Program
processing continues.

v A text form is defined in a FormGroup that contains
multiple forms with different values for the
screenSizes property. The screen size to which the
form was directed was not included in the list of
screenSizes or the combination of the mfsDevice,
mfsExtendedAttr, and mfsIgnore build descriptor

Appendix. Rational COBOL Runtime Messages 215

options that match the specified screen sizes. The
message appears at the terminal that originated the
transaction as the result of a converse or show
statement. The program conversation with the user
at this terminal ends because there is no way for the
user to enter data. The program continues processing
with the next message on the message queue.

MFS does not notify the program that a problem has
occurred. Therefore, message ELA00142P is built into
the MFS source to provide a method of notifying you
when an error occurs. A SNAP dump is not issued.

User response: If the error occurred for a print form,
review the resource association information specified
during generation, the program logic used to set the
value of the converseVar.printerAssociation system
variable and the MFS build descriptor options
(mfsDevice, mfsExtendedAttr, and mfsIgnore) to
determine the appropriate corrections to make.
Depending on the corrections required, generate either
the program or FormGroup again. In addition, if the
print form was sent to a terminal device, it might be
necessary for the system administrator to purge the
messages pending for the terminal using the IMS
/DEQ command.

If the error occurred for a text form, review the
screenSizes property specified for this form and the
MFS build descriptor options (mfsDevice,
mfsExtendedAttr, and mfsIgnore) to determine the
appropriate corrections to make. Generate the map
group again.

If the program using the text form is a
nonconversational program (spaSize="0" build
descriptor option), the user only needs to clear the
screen and type another transaction code to resume
work.

If the program that used the terminal map is a
conversational program (spaSize build descriptor
option greater than 0), the user must clear the screen,
type /EXIT to end the conversation and then type
another transaction code to resume work.

ELA00143P Data table %01C07 is not a message
table

Explanation: A message DataTable was specified for
the program. The DataTable specified is not a message
table.

The run unit ends.

User response: Either define the DataTable as a
message table and generate the DataTable again, or
correct the msgTablePrefix property specified for the
program and generate the program again.

ELA00144P Segmentation storage error

Explanation: Segmentation storage has an internal
error mapping memory.

The run unit ends.

In CICS environments, Rational COBOL Runtime issues
a dump based on options selected using the diagnostic
controller utility.

In all z/OS environments, Rational COBOL Runtime
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: This is an internal system error.
Contact the system administrator for assistance.

ELA00145A Form name required - enter /FOR
%01C06O form-name

Explanation: The FormGroup has more than one form,
but a valid form name was not entered when the IMS
/FOR command was used to display the form.

User response: Enter the /FOR command again, using
the following format:

/FOR FormGroupO formname

ELA00146P Segmentation status error

Explanation: The status byte for segmentation storage
management is lost and the program has no way to
recover.

This error occurs when a PA key is pressed prior to
pressing the ENTER key or a PF key for an IMS
conversational transaction.

If the program was generated with a spaSize build
descriptor option value greater than 0 and without
specifying the spaStatusBytePosition build descriptor
option, then there was no recovery feature generated
into the program.

If the program was generated with a spaSize build
descriptor option greater than 0 and also specified the
spaStatusBytePosition build descriptor option, then the
recovery feature was generated into the program, but
was bypassed. A bypass of the recovery feature occurs
when a deferred message switch comes from a
non-EGL program or an EGL program that was not
generated with the same values for the spaSize,
spaADF, and spaStatusBytePosition build descriptor
options.

In the IMS/VS environment, the transaction (logical
unit of work) ends and processing continues with the
next message.

User response: Restart the transaction sequence and
avoid using PA keys while on an EGL generated screen.

Consider generating the EGL programs with a
combination of spaSize, spaADF, and
spaStatusBytePosition build descriptor options that

216 IBM Rational COBOL Runtime Guide for zSeries

will allow recovery from pressing a PA key.

ELA00147A Key sequence is not valid. Last screen
will display - enter the data again

Explanation: A PA key was pressed prior to pressing
the ENTER key or a PF key. IMS has reserved the use
of the PA keys. All modifications on the previous screen
are lost.

User response: Enter the data again and avoid use of
PA keys while on an EGL generated screen.

ELA00149I %01C07 command ignored during
message database load

Explanation: The PSB for the message database
specifies that the database is being initially loaded.
Only ADD commands are supported during initial load
of a DL/I message database.

User response: Run the message utility again,
specifying the PSB for the database.

ELA00151P %01C07 of message record to/from
message database failed

Explanation: The message utility program
encountered an error inserting or deleting a message in
the message database. This message is accompanied by
either the DL/I or SQL diagnostic messages describing
the error.

If an ELASNAP DD statement is specified in the JCL,
Rational COBOL Runtime issues a snap dump. The run
unit ends.

User response: Review the diagnostic messages. Verify
that the database has been successfully defined by
checking either the DL/I or the DB2 message database
create job (ELAMSJL2) messages. Correct the problem
and run the job again.

ELA00152I Message file %01C03 has been added

Explanation: The indicated user message file has been
successfully added to the message database.

User response: Test the programs that use this user
message file.

ELA00153P %01C08 failed on file %02C08

Explanation: While running the message utility, an
attempt was made to access (open, close, read, or write)
the indicated file. The access failed and the message
utility ended. The first message insert indicates the type
of access that failed. The most common errors are a
missing DD statement for the file or DCB parameters
that are not correct.

User response: Refer to the job listing for system error
messages pertaining to the indicated DD name. Correct

the error and run the job again, starting with the
command that caused the error.

ELA00154I Message file %01C03 has been replaced

Explanation: The indicated user message file has been
successfully replaced in the message database.

User response: Test the programs that use this user
message file.

ELA00155I Message file %01C03 has been deleted

Explanation: The indicated user message file has been
successfully deleted from the message database.

User response: Change the program using this user
message file to use another message file and generate
the program again.

ELA00156I Replace on non-existent message file
%01C03, file was added

Explanation: A REPLACE command was issued for
the indicated message file, but the file did not exist in
the message database. The file was added instead.

User response: None, provided the file was added to
the correct message database.

ELA00157P %01C08 failed on file %02C08, file
status = %03C06

Explanation: While running the message utility, an
attempt was made to access (open, close, read, or write)
the indicated VSAM file. The file identifies the DD
name. The file status consists of the VSAM return code
(2 characters), function (1 character), and feedback code
(3 characters). The access failed and the message utility
terminated. The first message insert indicates that type
of access that failed.

User response: Refer to the VSAM administration
guide for your system for a definition of the status
codes. Also look at the job listing for system error
messages pertaining to the indicated DD name. Correct
the error and run the job again, starting with the
command that caused the error.

ELA00158P Syntax error on command

Explanation: A command being processed by the
message utility did not follow the correct syntax. The
message utility ends.

User response: Correct the command and run the job
again, starting with the command that had the incorrect
syntax.

Appendix. Rational COBOL Runtime Messages 217

ELA00159P Message file %01C03 already exists in
the message database

Explanation: An attempt to add a user message file
failed because the message file already existed in the
message database for the language specified in the
current message utility command. The return code is
set to 08.

User response: Use the REPLACE command to
update the message file in the message database.

ELA00160P Message file %01C03 does not exist in
the message database

Explanation: An attempt to remove or list a user
message file failed because the message file does not
exist in the message database for the language specified
in the current message utility command. The return
code is set to 08. If the insert is an asterisk, you
attempted to list all messages in an empty message
database.

User response: Correct the message file ID in the
command and run the job again.

ELA00162P Message I/O error, type %01C04, file
%02C08, code %03C08

Explanation: An error occurred when a program
generated using Cross System Product/370 Runtime
Services Version 1 Release 1 attempted to open or close
a user message file. The type variable insert specifies
VSAM as the message file type. The file insert specifies
the DD name. The first two bytes of the code insert are
either 08 (to specify an OPEN) or 16 (to specify a
CLOSE). The next two bytes are the ACB (Access
control block) return code in hexadecimal format. The
remaining bytes in the code insert are zero.

The run unit ends.

User response: Have the administrator do one of the
following:

v Determine the cause of the problem from the VSAM
error code. First, see Chapter 22, “Common System
Error Codes for z/OS Systems,” on page 167 for the
tables of common VSAM codes. If the codes are not
listed in the tables, refer to the VSAM administration
guide for your system for a definition of other
VSAM codes. Also verify that the user message file is
allocated correctly.

v Convert the message file to a message table and
generate the program again under EGL, VisualAge
Generator, or CSP/370AD Version 4 Release 1.

ELA00163P %01C08, %02C60

Explanation: This message is used when a Rational
COBOL Runtime message cannot be found in the
language-dependent message DataTable program
ELACxxx, where xxx is the language code.

The first variable insert in this message is the error
message number for the error that actually occurred.
The second insert in this message contains one of the
message inserts that is used by the error that actually
occurred. This message is repeated as many times as
necessary to report all inserts. The inserts are reported
in order by their number: %01, %02, and so on.

User response: See the message with the
corresponding message number in this manual. Take
the action appropriate for that message. Also, contact
the system administrator to determine why the
message could not be found in the Rational COBOL
Runtime language-dependent message DataTable
program.

ELA00164P %01C08, %02C04, %03C02, %04X08

Explanation: The error handler was not successful in
using a DL/I call to write diagnostic information about
another error to normal destinations for error
information. The variable inserts contain the following
information:
v Destination from the terminal identifier field of the

PCB used in the call.

The destination can be the error destination specified
at program generation, the user terminal ID, or the
IMS log.

v DL/I function
v DL/I status code
v PCB Address

Rational COBOL Runtime ends the program with a
user abend.

User response: For information about locating the
diagnostic messages in the dump, see Chapter 19,
“Finding Information in Dumps,” on page 151. These
messages relate to the original error that ended the
program. Also verify that the errorDestination value
specified in your build descriptor options is included in
the IMS system generation.

ELA00166P The recursion stack exceeds the
maximum size allowed

Explanation: The stack that contains information to
support recursion or segmentation has become too
large.

The run unit ends.

In CICS environments, Rational COBOL Runtime issues
a dump based on options selected using the diagnostic
controller utility.

In all z/OS environments, Rational COBOL Runtime
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Check for an infinite loop that is
causing a large number of recursions. Either limit the

218 IBM Rational COBOL Runtime Guide for zSeries

number of recursions, or reduce the number of
functions in the program.

ELA00167I The diagnostic message queue is empty

Explanation: The diagnostic print utility for IMS
ended without printing any diagnostic messages
because the queue was empty.

User response: None required.

ELA00168P %01C03

Explanation: The NLS language code in the file
allocated to ELAMSG as shown in the insert is not
valid. The Rational COBOL Runtime utility ends
because the language code for messages and report
headings cannot be determined.

User response: Correct the JCL so that the ELAMSG
DD statement references a sequential file or in-stream
data that contains a valid NLS code in columns 1
through 3 of the first record. See “Installation and
Language-Dependent Options for z/OS” on page 16 for
a list of the valid NLS codes.

ELA00169I Work database purged of %01D08
records older than day %02C06, time
%03C06

Explanation: The utility that purges obsolete records
from the work database has completed normally.

User response: None required.

ELA00170P Input is not valid

Explanation: Either the date or the time provided to
the utility that purges obsolete records from the work
database was nonnumeric or was not valid.

The run unit ends.

User response: Ensure that the date is in Julian format
(YYDDD - two positions for the year and three
positions for the day of the year). Ensure that the time
is in HHMMSS format (two positions for the hour, two
positions for the minutes, and two positions for the
seconds). The date and time specified must be at least
24 hours before the time that the purge program is run.

ELA00172I CICS error, system identifier %01C08

Explanation: An error occurred on a CICS function to
be performed on a remote system. The message
displays the CICS identifier for the remote system.

This message is always issued along with other
messages that identify the function being performed
and the CICS error return information.

User response: None required.

ELA00173P An error occurred in remote program
%01C08, date %02C08, time %03C08

Explanation: An error occurred in a remote program
that caused the remote program to stop running.
Diagnostic messages might have been logged at the
remote location giving information about the error. The
date and time stamp on this message can be used to
associate the messages logged at the remote system
with this error message.

The run unit ends.

User response: Report the error to the system
administrator.

ELA00174P %01C08 cannot be used in called
programs on a remote system

Explanation: The sysLib.commit() and
sysLib.rollback() system functions cannot be used in a
remote called basic program or in a program called by
a remote called basic program.

The run unit ends.

User response: Move the sysLib.commit() and
sysLib.rollback() system functions to the program that
called the remote program.

ELA00179P An error occurred starting transaction
%01C08

Explanation: IMS or CICS indicates that an error
occurred when a program attempted to start the
specified transaction. A message following this message
gives the IMS or CICS error codes.

The run unit ends.

User response: Determine the cause of the error from
the following message and correct the error.

ELA00180P Error recovery PCBs not passed to
program

Explanation: The program specifies callInterface =
DLICallInterfaceKind.CBLTDLI and was called by a
non-EGL program. Two required PCBs (the I/O PCB
and the alternate express PCB) were not passed to the
program. The PCBs are required for issuing rollback
and commit functions, and reporting error conditions.

The error results in an abend with a dump because the
PCBs for reporting and recovering from the error are
not available.

The run unit ends.

User response: Modify the program to pass the I/O
PCB and the alternate express PCB to the program
using one of the following techniques:

v Specify the PCB name as a program parameter and
set the pcbParms program property.

Appendix. Rational COBOL Runtime Messages 219

v Specify psbData as a program parameter and set the
psbParm program property.

ELA00181P I/O PCB not passed to program %01C08

Explanation: The program specifies callInterface =
DLICallInterfaceKind.CBLTDLI and was called by a
non-EGL program. The I/O PCB was not passed to the
program. This PCB is required for issuing rollback and
commit functions and for reporting error conditions

The run unit ends.

User response: Modify the calling program to pass the
I/O PCB to the EGL program. Modify the EGL
program to expect the I/O PCB in the parameter list
using one of the following techniques:

v Specify the PCB name as a program parameter and
set the pcbParms program property.

v Specify psbData as a program parameter and set the
psbParm program property.

ELA00183P SYNCPOINT not allowed with PCB
parameters

Explanation: The program invoked the
sysLib.commit() or sysLib.rollback() system functions.
Each of these functions results in an EXEC CICS
SYNCPOINT command, which ends the currently
scheduled PSB. Either this program or a program that
called this program included a PCB in the called
parameter list. The PCB address passed in the
parameter list is no longer valid because the PSB is not
active.

The run unit ends.

User response: Either modify the program so it does
not invoke the sysLib.commit() or sysLib.rollback()
system functions, or modify the program to receive the
PSB as a parameter rather than the individual PCBs.

ELA00184P Program %01C08 and form services
program %02C08 are not compatible

Explanation: The specified program and form services
program are generated for different systems.

The run unit ends.

User response: Generate the form services program
for the same environment as the program.

ELA00185P Length of %01D02 for record %02C18 is
not valid and conversion ended

Explanation: Conversion of a variable length record
between the workstation format and host format cannot
be performed because of one of the following
conditions:
v The record length for the current record indicates

that the record ends in one of the following:
– The middle of a numeric field

– The middle of a DBCHAR character
– The middle of an SO/SI string.

v The record is longer than the maximum length
defined for the record.

The run unit ends.

In CICS environments, Rational COBOL Runtime issues
a dump based on options selected using the diagnostic
controller utility.

In all z/OS environments, Rational COBOL Runtime
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Modify the program to set the record
length so that it ends on a valid field boundary.

ELA00186P An operand of type MBCHAR in a
conversion operation is not valid

Explanation: Conversion of an MBCHAR field from
EBCDIC to ASCII or from ASCII to EBCDIC cannot be
performed because a double-byte data value is not
valid.

The run unit ends.

In CICS environments, Rational COBOL Runtime issues
a dump based on options selected using the diagnostic
controller utility.

In all z/OS environments, Rational COBOL Runtime
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Modify the program to ensure that any
MBCHAR fields are valid in the records to be
converted.

ELA00187P Conversion table %01C08 does not
support double-byte character
conversion

Explanation: Conversion of an MBCHAR or DBCHAR
field from ASCII to EBCDIC or from EBCDIC to ASCII
cannot be performed because the specified conversion
table does not include conversion tables for double-byte
characters.

The run unit ends.

In CICS environments, Rational COBOL Runtime issues
a dump based on options selected using the diagnostic
controller utility.

In all z/OS environments, Rational COBOL Runtime
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Modify the program to specify a
conversion table that contains the double-byte
conversion tables that are valid for DBCHAR and
MBCHAR data. For background information, refer to
the EGL help topic on data conversion.

220 IBM Rational COBOL Runtime Guide for zSeries

ELA00188P Conversion Error. Function: %01C25,
Return Code: %02C05, Table: %03C08

Explanation: A system function was called to perform
code page conversion for data used in a client/server
program. The function failed.

Possible causes for the failure are:

v The code pages identified in the conversion table are
not supported by the conversion functions on your
system.

v For double-byte character conversion where the
source data is in ASCII format, the source data was
created under a different DBCS code page than the
code page that is currently in effect on the system.

User response: For background information, refer to
the EGL help topic on data conversion.

ELA00191I Program %01C08, generation date
%02C08, time %03C08

Explanation: An error in the specified program has
occurred. The error is identified in other messages
preceding this message. The error might be caused by
changes to individually generated components of the
program.

User response: Verify the generation date and time of
the program with that of other generated components.

ELA00192I Print services program %01C08,
generation date %02C08, time %03C08

Explanation: An error in the specified print services
program has occurred. The error is identified in other
messages preceding this message. The error might be
caused by changes to individually generated
components of the controlling program.

User response: Verify the generation date and time of
the print services program with that of other generated
components in the program.

ELA00195I Form group format module %01C08,
generation date %02C08, time %03C08

Explanation: An error in the specified FormGroup
format module has occurred. The error is identified in
other messages preceding this message. The error
might be caused by changes to individually generated
components of the controlling program.

User response: Verify the generation date and time of
the FormGroup format module with that of other
generated components in the program.

ELA00201P z/OS %01C08 error in service %02C08,
RC = %03D04

Explanation: Rational COBOL Runtime received an
error return from a z/OS macro. The inserts identify

the macro name, the Rational COBOL Runtime
program name, and the return code.

The run unit ends.

In all z/OS environments, Rational COBOL Runtime
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Contact the system administrator.

ELA00202P The file name %01C65 is not valid in
the record-specific variable
resourceAssociation or in
converseVar.printerAssociation

Explanation: The value in either the
recordName.resourceAssociation or
converseVar.printerAssociation is not in a valid format.
This message can occur when a spool file name has a
format that is not valid.

User response: Refer to the EGL help system to
determine the valid syntax. Correct and generate the
program again.

ELA00203P CICS I/O error on file %01C08, resource
%02C08

Explanation: The current program has attempted to
gain access to a CICS file, and CICS returned a status
code that indicated an I/O error occurred. The file is
the logical file name specified in the record part
declaration. The resource is the CICS FILE or
TDQUEUE resource definition entry.

Possible causes of the error are the following:
v The file does not exist on disk.
v The file is not defined in the CICS FILE or

TDQUEUE resource definition entry.
v The file was specified to be opened when first

referenced.
v On z/OS CICS, the file was closed using the CSMT

or CEMT transactions.
v For z/OS CICS, the DD statement for the file in the

CICS startup JCL is missing, does not match the FILE
name, or is in error.

v The file has been changed or otherwise corrupted.

Message ELA00204I is also displayed with the
information from the EXEC interface block (EIB).

The run unit ends.

Rational COBOL Runtime issues a dump based on
information supplied for the transaction with the
diagnostic controller utility.

User response: Have the system administrator use the
CICS diagnostic information in this message and in
message ELA00204I to determine the cause of the error.
Correct the error and run the program again.

Appendix. Rational COBOL Runtime Messages 221

ELA00204I CICS EIBFN %01X04, RCODE %02X12,
RESP %03D04, RESP2 %04D04

Explanation: The current program has received an
error code for a CICS command.

The run unit ends.

User response: Refer to the CICS application
programmers' guide for an explanation of the EXEC
interface block (EIB) codes. Correct the error and run
the program again.

ELA00205P A CICS %01C22 error occurred in
service %02C08

Explanation: Rational COBOL Runtime received an
error status code for a CICS command. This message
identifies the command and the service program that
issued the command. This message is accompanied by
message ELA00204I, which contains the response codes
from the EXEC interface block (EIB).

The run unit ends.

Rational COBOL Runtime issues a dump based on
information supplied for the transaction with the
diagnostic controller utility.

User response: Have the CICS administrator use the
CICS diagnostic information in this message and in
message ELA00204I to determine the cause of the error.
Correct the error and run the program again.

ELA00206P Format of file %01C08 is not valid,
reason code %02C01, resource %03C56

Explanation: The attributes of the system resource
associated with the specified file name are not
compatible with the properties defined for the record in
the program. The reason code identifies the problematic
attribute, as follows:

1 Key offset

2 Key length

3 Access method

4 Record format

5 Record length

An access method mismatch occurs when the type of
data set allocated does not match what the program
expects. For example, a VSAM file is allocated as a
system sequential file or a partitioned data set is
allocated as a sequential file without specifying a
member name.

The run unit ends.

User response: Change the record part declaration, the
resource associations part, or both, so that the record
properties match the system resource attributes.
Generate and test the affected programs again.

ELA00207P The attributes for file %01C08 are not
compatible, reason code %02C01

Explanation: A program has attempted to use a file
having file attributes that differ from another program
in the run unit. All programs in a run unit must use
the same attributes for a file. The reason code identifies
the problematic attribute, as follows:

1 Key offset

2 Key length

3 Access method

4 Record format

5 Record length

6 Using the sysVar.remoteSystemID system
variable to identify the location of a remote
file

The run unit ends.

User response: Change the Record part declarations,
the resource associations part, or both, so that all
programs in the run unit have identical attributes for
the file. Generate and test the affected programs again.

ELA00208P Print services program %01C06 and
FormGroup format module %02C08
were generated separately

Explanation: The specified print services program
attempted to process a form that was generated at a
time different from the FormGroup format module.
Both the print services program and the FormGroup
format module must be generated at the same time.

The run unit ends.

User response: Make sure that the print services
program and the FormGroup format module were
generated at the same time and are installed in the
correct libraries.

ELA00209P The cursor position is (%01D02,
%02D02). That position is outside of the
current form: %03C08.

Explanation: The cursor position is outside of the
form boundaries because of the
ConverseLlib.setCursorPosition function, which sets the
position of the cursor for the next converse.

User response: Change the function so that the cursor
position is within the form boundaries.

ELA00209I Backout completed successfully after
abnormal termination for transaction
%01C04

Explanation: The specified CICS transaction ended
abnormally with the code specified in accompanying

222 IBM Rational COBOL Runtime Guide for zSeries

message ELA00222P. Rational COBOL Runtime
termination was successful in backing out all changes
to recoverable resources and closing all open external
resources associated with the transaction.

User response: No action required.

ELA00210P Service number %01D04 is not valid

Explanation: An attempt was made to start a Rational
COBOL Runtime routine that does not exist or that is
not valid.

The run unit ends.

In CICS environments, Rational COBOL Runtime issues
a dump based on options selected using the diagnostic
controller utility.

In all z/OS environments, Rational COBOL Runtime
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Generate and test the program again.
If the problem persists, do as follows:
1. Record the message number
2. Obtain the dump
3. Record the scenario under which this message

occurs
4. Obtain the COBOL source for the problem program
5. Use your electronic link with IBM Service if one is

available, or contact the IBM Support Center

ELA00212P Error encountered gaining access to file
%01C08, spool resource %02C65

Explanation: An error was received when attempting
to gain access to a spool file. The message is
accompanied by message ELA00204I, which contains
response codes from the CICS EXEC interface block
(EIB).

If the function was a write spool request (EIBFN 5602)
and the spool resource name was specified as node ID
without being qualified by user ID, an error will occur
if the user did not log on using the CICS logon
procedure.

The run unit ends.

Rational COBOL Runtime issues a dump based on
information supplied for the transaction with the
diagnostic controller utility.

User response: If the spool resource name specifies
node ID without specifying user ID, log on using the
CICS logon procedure before running the program
again. Otherwise, refer to the CICS customization
documentation for an explanation of the codes that are
returned by the spool interface; then, correct the
problem specified in the response codes.

Refer to the EGL help system for additional
information on the format of the system resource name.

ELA00215P PSB does not match Enterprise
Generation Language PSB definition

Explanation: The number of PCBs passed to the
program at program initialization time was less than
the number of PCBs in the EGL PSB record definition.
This message is accompanied by ELA00217I.

The run unit ends.

Rational COBOL Runtime issues a dump based on
information supplied for the transaction with the
diagnostic controller utility.

User response: Do as follows:

v Correct the DL/I PSB; or

v Correct the EGL PSB record definition and generate
the program again

ELA00216P CICS DL/I error, function %01C04,
UIBFCTR %02X02, UIBDLTR %03X02

Explanation: CICS detected an error in a DL/I call.
The message variable inserts specify the function being
requested and the return codes from the CICS user
interface block (UIB). If the function code is PCB, the
program was attempting to schedule the program PSB.
The message is accompanied by message ELA00217I.

Common return codes are as follows:

UIBFCTR UIBDLTR Description

08 00 Argument on DL/I call
not valid. This error can
occur if the IMSESA
installation option in
module ELARPIOP is
specified as YES, but the
IMS environment is not
IMS/ESA.

08 01 PSB not found. The PSB
must be defined to CICS.

08 03 The calling program has
already successfully issued
a scheduling (PCB) call
that has not been followed
by a TERM call.

08 05 PSB initialization was not
successful.

08 06 The PSB in the scheduling
call is not defined in the
program control table
(DLZACT).

08 07 A TERM call was issued
when the task had already
been terminated.

Appendix. Rational COBOL Runtime Messages 223

UIBFCTR UIBDLTR Description

08 09 An MPS batch program
attempted to issue a PCB
call for a read-only PSB or
for a nonexclusive PSB if
program isolation was
active.

08 FF DL/I not active

0C 02 Intent scheduling conflict

The run unit ends.

User response: If the DL/I call is not valid, check the
definition of the call to the dliLib.AIBTDLI(),
dliLib.EGLTDLI(), or VGLib.VGTDLI() system
function. Otherwise, correct the problem specified by
the error code. For additional codes, refer to the CICS
application programmers' guide for your system to
determine the meaning of the error codes.

ELA00217I Program %01C08, PSB name %02C08

Explanation: An error was detected in the specified
DL/I program. The message is accompanied by
messages ELA00215P or ELA00216P, which identify the
problem.

The run unit ends.

User response: Refer to the accompanying messages
for the problem cause.

ELA00218P Invocation of sysLib.audit not
successful, journal id = %01D05, journal
type = %02C02

Explanation: This message is accompanied by
ELA00204I, which displays the contents of EIBRESP.

Common EIBRESP codes for CICS are as follows:

22 LENGERR

The computed length for the journal record
exceeds the total buffer space allocated for the
journal data set as specified in the journal
control table (JCT) entry for the data set

43 JIDERR

Occurs if the specified journal identifier does
not exist in the JCT

The run unit ends.

User response: Refer to the CICS resource definition
guide to define journal data sets, or contact the system
administrator.

ELA00219P %01C22 error for %02C06 file %03C08,
%04C56

Explanation: An I/O operation was not successful for
the specified file.

Program processing ends on any nonzero status code if
the I/O statement is not in a try block; and ends on a
hard error if the I/O statement is in a try block when
vgVar.handleHardIOErrors is set to 0.

The message identifies the I/O statement, the file type,
the file name as specified in the record part, and the
system resource name associated with the file.

The run unit ends.

In all z/OS environments, Rational COBOL Runtime
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Check that the correct data set has
been allocated for this file.

ELA00220P Dynamic allocation was not successful,
file %01C08, return %02D04, error
reason code %03X04.

Explanation: Rational COBOL Runtime was not
successful in an attempt to perform dynamic allocation
for the specified file. The other inserts are the return
code in register 15 and the error reason code returned
by the SVC 99 instruction.

The most common cause is that the file was not
available. If you want your program to receive control
after getting the I/O error value fileNotAvailable,
place the I/O statement in a try block and set
vgVar.handleHardIOErrors to 1. If either condition is
not met, Rational COBOL Runtime ends the program.

The run unit ends.

User response: Contact the system administrator. See
the z/OS MVS Authorized Assembler Services Guide for an
explanation of the codes.

ELA00221P File %01C08, system resource name
%02C56, not found

Explanation: Rational COBOL Runtime attempted to
dynamically allocate the file with the system resource
name shown in the message. The file could not be
found.

If the system resource name is a 1- to 8-character DD
name, then there is no DD card for the file in the job
JCL. If the system resource name is a data set name,
then the data set either does not exist or is not
cataloged.

The run unit ends.

User response: If the name is a DD name, allocate a
file to the DD name in the JCL. If the name is a data
set name, ensure that the file exists and is cataloged.

224 IBM Rational COBOL Runtime Guide for zSeries

ELA00222P Transaction %01C04 ended abnormally
with CICS abend code %02C04

Explanation: The specified CICS transaction ended
abnormally with the specified code.

Message ELA00021I is displayed after the main
message, showing the function name and statement line
number where the abend occurred. The function name
is accurate only if you set the symbolic parameter
WRITEFUNCTIONDETAILS to YES in the generated
EGL COBOL program. Specifying YES for this symbolic
parameter causes additional COBOL statements to be
generated to ensure that the function name is
continuously updated with the correct value. The
statement line number is accurate only if you set the
symbolic parameter WRITESTATEMENTDETAILS to
YES in the generated EGL COBOL program. Specifying
YES for this symbolic parameter causes additional
COBOL statements to be generated to ensure that the
statement line number is continuously updated with
the correct value.

On z/OS CICS systems, the following additional
information is provided:

v On CICS Version 2 systems, if the ABEND code is
ASRA or ASRB, this message is accompanied by the
message ELA00223P and the ABEND exit can
determine the module within which the error
occurred.

v On later CICS systems, if the abend code is ASRA or
ASRB, CICS message DFHAP0001 identifies the
offset in the module at which the error occurred. The
diagnostic control option specified for transaction
abends using the Rational COBOL Runtime
diagnostic control utility determines whether a dump
occurs.

The Rational COBOL Runtime abend handler ends the
program by issuing another ABEND command using
the same code.

User response: See Chapter 23, “Rational COBOL
Runtime Return Codes, Abend Codes, and Exception
Codes,” on page 185 for a description of abend codes
using the format ELAx. See “Common CICS Abend
Codes” on page 195 for CICS or user program
documentation for an explanation of other abend codes.

ELA00223P Program %01C08 abended at offset
%02X08

Explanation: The specified program has abended with
an ASRA or ASRB abend code. This indicates that a
program check has occurred at the specified
hexadecimal offset.

Rational COBOL Runtime ends the program with a
user abend.

Message ELA00021I is displayed after the main
message, showing the function name and statement line
number where the abend occurred. The function name

is accurate only if you set the symbolic parameter
WRITEFUNCTIONDETAILS to YES in the generated
EGL COBOL program. Specifying YES for this symbolic
parameter causes additional COBOL statements to be
generated to ensure that the function name is
continuously updated with the correct value. The
statement line number is accurate only if you set the
symbolic parameter WRITESTATEMENTDETAILS to
YES in the generated EGL COBOL program. Specifying
YES for this symbolic parameter causes additional
COBOL statements to be generated to ensure that the
statement line number is continuously updated with
the correct value.

User response: If the program is a generated COBOL
program, use the compile listing to find the COBOL
verb that was running when the program ended
abnormally. The COBOL comments identify the EGL
statements associated with the COBOL verb. Determine
from the dump whether the problem was caused by
bad data passed to the program. If the generated
COBOL program is in error, use your electronic link
with IBM Service or contact the IBM Support Center.

ELA00225P Temporary storage queue name %01C08
is not valid

Explanation: The record-specific variable
recordName.resourceAssociation is set to a temporary
storage queue name that is not valid. The name
conflicts with a queue name that is reserved for
Rational COBOL Runtime. Names cannot begin with
EZE.

The run unit ends.

User response: Specify a valid temporary storage
queue name in the program.

ELA00228P The program attempted to use the
resource %01C65 with file %02C07 and
file %03C07

Explanation: The program attempted to associate the
same system resource with two different files. The
resource cannot be associated with two different files at
the same time.

The run unit ends.

User response: Examine the program and correct the
logic. Generate and test the affected programs again.

ELA00229P Invocation of sysVar.startTransaction
failed, transID = %01C04, terminal ID =
%02C08

Explanation: This message is accompanied by the
message ELA00204I, which displays the contents of
EIBRESP.

Common codes are as follows:

11 TERMID error

Appendix. Rational COBOL Runtime Messages 225

The specified terminal ID is not known to
CICS.

28 TRANSID error

The specified transaction ID is not known to
CICS.

The run unit ends.

User response: Have the system administrator define
the terminal or transaction to CICS.

ELA00230P An error was encountered accessing
CICS queue %01C08

Explanation: An error was received when attempting
to access a CICS queue. The queue can be a transient
data queue or temporary storage queue. This message
is accompanied by message ELA00204I, which contains
response codes from the CICS EXEC interface block
(EIB).

The run unit ends.

Rational COBOL Runtime issues a dump based on
information supplied for the transaction with the
diagnostic controller utility.

User response: Refer to the CICS application
programmers' guide for an explanation of the response
codes.

ELA00231P Error encountered retrieving data passed
to program %01C08

Explanation: An error was received when attempting
to retrieve data being passed to this program by a
transfer to transaction or show statement or by a
vgLib.startTransaction() system function. This message
is accompanied by message ELA00204I, which contains
response codes from the CICS EXEC interface block
(EIB).

The run unit ends.

Rational COBOL Runtime issues a dump based on
information supplied for the transaction with the
diagnostic controller utility.

User response: Refer to the CICS application
programmers' guide for an explanation of the codes
that are returned.

ELA00232P Form %01C08 in FormGroup %02C06 is
not declared or is not supported

Explanation: The specified form does not exist or is
not defined for the type of device being used.

The run unit ends.

User response: Specify the correct screenSizes
property for the form. Generate the FormGroup again.

If you are running on a CICS system, have the system

administrator check that the alternate screen size for
your device type is specified in the PCT entry for your
transaction.

If the FormGroup name uses the format ELAxxx, where
xxx is the language code, the FormGroup might have
been modified incorrectly. The ELAxxx FormGroup
contains the Rational COBOL Runtime error forms.

ELA00237P CICS TS Queue %01X16 error occurred
in work database operation for program
%02C08

Explanation: An error was received when attempting
to access a CICS temporary storage queue. This
message is accompanied by message ELA00204I, which
contains response codes from the CICS EXEC interface
block (EIB).

If the error is an INVREQ (EIBRESP=16), the problem
might be caused by Rational COBOL Runtime
attempting to write a record that is longer than the
control interval size for the VSAM data sets used for
the auxiliary storage queue. The maximum
segmentation record size written by Rational COBOL
Runtime is set by the TSQUE option in the installation
options module ELARPIOP. TSQUE specifies the
maximum size as the number of kilobytes; the default
value is 16 KB.

The run unit ends.

User response: Refer to the CICS application
programmers' guide for an explanation of the codes.

If the control interval size is the problem, have the
system administrator assemble the installation module
again after setting the TSQUE value to a value less than
the control interval size.

Refer to the Rational COBOL Runtime program
directory for your system for more information.

ELA00239P Print services program %01C08 cannot
support print request from program
%02C08

Explanation: A program and a print services program
were generated with different values for the
formServicePgmType build descriptor option. The
print services program does not contain the type of
print support (GSAM or SEQ) required by the program.

The run unit ends.

User response: Generate the FormGroup again with
the formServicePgmType build descriptor option
required by the program. Be sure to include all the
types of printing that are required for any program that
uses the FormGroup.

226 IBM Rational COBOL Runtime Guide for zSeries

ELA00249P Mapping services program %01C08
compiled with DATA(31) cannot be used
by program

Explanation: A form services program compiled with
the DATA(31) compiler option has been loaded for a
program link-edited as AMODE(24).

User response: Compile the form services program
again with the COBOL DATA(24) option; and make
sure that the data build descriptor option is set to 24
whenever the FormGroup is generated.

ELA00250P Program cannot process data with 31-bit
addresses

Explanation: The initial program in the run unit was
compiled with DATA(31). The current program was
link-edited as AMODE(24). This is not compatible.

User response: Do one of the following:

v Compile the initial program in the run unit as
DATA(24).

v Link-edit the current program as AMODE(31).

ELA00251P Data table %01C08 compiled with
DATA(31) cannot be used by program

Explanation: A DataTable compiled with the
DATA(31) compiler option has been loaded for a
program link-edited as AMODE(24).

User response: Compile the DataTable program again
with the COBOL DATA(24) option. Also ensure the
data build descriptor option is set to 24 whenever the
DataTable is generated.

ELA00252P Error on file %01C08, queue name
%02C08, RC = %03C08

Explanation: An I/O logic error was detected by
Rational COBOL Runtime during processing of an I/O
statement for a CICS temporary storage queue.

Program processing ends on any nonzero status code if
the I/O statement is not in a try block; and ends on a
hard error if the I/O statement is in a try block when
vgVar.handleHardIOErrors is set to 0.

Because the error was detected by Rational COBOL
Runtime instead of the access method, the return code
value consists of the characters RS (for runtime
services) followed by a Rational COBOL return code
number.

The run unit ends.

Rational COBOL Runtime issues a dump based on
information supplied for the transaction with the
diagnostic controller utility.

User response: See Chapter 22, “Common System
Error Codes for z/OS Systems,” on page 167 to
determine the meaning of the Rational COBOL return

code, and take the appropriate action.

ELA00253P Program %01C08 was not generated to
receive form %02C08

Explanation: The specified program received a form
as an input form, but the program does not contain
processing logic for handling segmented programs.
Either the wrong transaction name was specified when
the program was started, or the wrong program was
specified in the transaction definition.

The program was started as a result of one of the
following:

v Specifying a new value for the sysVar.transactionID
system variable before issuing a converse statement
in a segmented Text UI program instead of using the
original transaction code. After the user entered
input data, processing returned to the wrong
program because the new transaction code is not
associated with the program that issued the converse
statement.

v In IMS/VS, using the /FORMAT command for a
form that specifies the transaction code for the
program.

The program must specify either an inputForm
property or have the segmented property set to YES
and issue a converse statement for the form being
received.

The run unit ends.

User response: Make sure that the following are
specified correctly:

v The transaction ID specified on the show statement

v The form name in the inputForm program property

v The transaction ID contained in sysVar.transactionID
system variable before a segmented converse

Generate the modified program again.

ELA00254P Invalid values for sysLib.audit, journal
ID = %01D05, type = %02C02, length =
%03D05

Explanation: A parameter in sysLib.audit() is not
valid:

v The journal ID must be between 1 and 99

v The third byte in the record must be in the range
X'A0' to X'FF'

v The record length must be between 28 and 32763

The run unit ends.

Rational COBOL Runtime issues a dump based on
information supplied for the transaction with the
diagnostic controller utility.

Appendix. Rational COBOL Runtime Messages 227

User response: Correct the error and generate the
program again.

ELA00255P Invalid values for sysLib.audit, type =
%01C02, length = %02D05

Explanation: A parameter in sysLib.audit() is not
valid:

v The third byte in the record must be in the range
X'A0' to X'FF'

v The record length must be between 28 and 32767

The run unit ends.

User response: Correct the error and generate the
program again.

ELA00260E %01D08 bytes of VGUI record do not fit
in %02D08 byte buffer

Explanation: The program issued a converse or show
statement for a VGUI record. There was not enough
room in the communications buffer for the record. The
buffer needs space for the record plus any message
information written using the sysLib.setError() system
function.

User response: Modify the program to reduce the size
of the VGUI record or write fewer or smaller error
messages.

ELA00261E sysLib.setError message information and
inserts do not fit in %01D08 byte buffer

Explanation: The program invoked the
sysLib.setError() system function one or more times to
write messages associated with a VGUI record. The
information associated with the last message written
does not fit into the buffer used by the program for
communicating with the user.

User response: Modify the program to write fewer or
smaller error messages.

ELA00262E VGWebTransaction program and VGUI
record bean %01C18 are incompatible

Explanation: A VGWebTransaction program was
started with information from a VGUI record bean that
is not known to the VGWebTransaction program or
whose definition is not compatible with the VGUI
record definition with which the program was
generated.

User response: Ensure that the specified VGUI record
is specified in the inputUIRecord property for the
program. Generate the program and the Java beans
using the same VGUI record definition.

ELA00263E Number of elements value %01C10 is
out of range for structured field array at
offset %02X08

Explanation: A VGWebTransaction program could not
write a VGUI record because the value in the
numElementsItem field for a structured field array in
the record was less than 0 or greater than the
maximum size defined for the array.

User response: Correct the program logic so that it
sets the value of the number of elements item to a
value within the allowed range.

ELA00264E Input data entered by the user does not
fit in the VGUI record

Explanation: A VGWebTransaction program received
input data from the web server that does not fit in the
VGUI record. The VGWebTransaction program and the
Java bean associated with the VGUI record might have
been generated at different times with incompatible
VGUI record declarations.

User response: Generate the program and the Java
beans using the same VGUI record definition. Contact
IBM support if this does not correct the problem.

ELA00265E Segmented converse is not supported
when local variables or function
parameters are in the run-time stack

Explanation: The message indicates that a converse
statement is not valid because the EGL run time cannot
restore the values of function parameters or local
variables after the converse runs.

For more information, refer to the EGL help topic on
segmentation.

The runtime stack is a list of functions; specifically, the
current function plus the series of functions whose
running made possible the running of the current
function.

User response: Modify the program in one of two
ways:

v Ensure that the functions on the runtime stack have
neither parameters nor local variables

v Ensure that the converse is not segmented.

ELA00266E MQ function %01C08, Completion Code
%02C02, Reason Code %03C08.

Explanation: The MQ function did not complete
successfully, as indicated by the following completion
codes:

1 MQCC_WARNING

2 MQCC_FAILED

228 IBM Rational COBOL Runtime Guide for zSeries

The reason for the completion code is set in the reason
code field by MQSeries®. Some common reason codes
are:

2009 Connection broken

2042 Object already open with conflicting options

2045 Options not valid for object type

2046 Options not valid or not consistent

2058 Queue manager name not valid or not known

2059 Queue manager not available for connection

2085 Unknown object name

2086 Unknown object queue manager

2087 Unknown remote queue manager

2152 Object name not valid

2153 Object queue-manager name not valid

2161 Queue manager quiescing

2162 Queue manager shutting down

2201 Not authorized for access

2203 Connection shutting down

The run unit ends.

User response: Refer to the MQSeries Application
Programming Reference for further information on
MQSeries completion and reason codes.

ELA00267E Queue Manager Name %01C48.

Explanation: This is the name of the queue manager
associated with the failing MQ function call listed in
message ELA00266. If the failing MQ function was
MQOPEN, MQCLOSE, MQGET, or MQPUT, the name
identifies the queue manager specified with the object
name when the queue was opened. Otherwise, the
name is the name of the queue manager to which the
program is connected (or trying to connect). If the
queue manager name is blank, the queue manager is
the default queue manager for your system.

The run unit ends.

User response: Refer to the MQSeries Application
Programming Reference for further information on the
MQSeries completion and reason codes that are listed
in message ELA00266.

ELA00268E Queue Name %01C48.

Explanation: This is the name of the queue object
associated with the failing MQ function call listed in
message ELA00266.

The run unit ends.

User response: Refer to the MQSeries Application
Programming Reference for further information on

MQSeries completion and reason codes that are listed
in message ELA00266.

ELA00269E Array index value %01D07 out of range
for array %02C18 with size of %03D07

Explanation: The index specified for the dynamic
array is out of bounds.

User response: Specify an index between 1 and the
current number of elements in the array.

ELA00270E An attempt was made to exceed the
maximum size of array %01C18

Explanation: An attempt was made to add an element
to a dynamic array that already contains the maximum
allowed number of elements.

User response: Modify the program in either of two
ways:

v Increase the value of the dynamic array property
maxSize

v Change the logic so that the number of elements is
always less than or equal to the value of maxSize.

ELA00300I A new copy was requested for part
%01C08

Explanation: A new copy was requested for the
programs associated with the specified part. Newly
started transactions use the new copy of the program.

User response: None required.

ELA00301I The diagnostic control options were
changed

Explanation: The diagnostic control options were
changed after a user request from the Rational COBOL
Runtime Diagnostic Control utility.

User response: None required.

ELA00302I Error message queue sent to print
destination

Explanation: The contents of the transient data queue
containing the error messages were sent to the spooling
system after a user request from the Rational COBOL
Runtime Diagnostic Print utility.

User response: None required.

ELA00303I Error message queue sent to print
destination and deleted

Explanation: The contents of the transient data queue
containing the error messages were sent to the spooling
system after a user request from the Rational COBOL
Runtime Diagnostic Print utility. The contents of the
transient data queue were then deleted.

Appendix. Rational COBOL Runtime Messages 229

User response: None required.

ELA00304A Type a valid selection number, then
press Enter

Explanation: The selection number entered for a field
on one of the Rational COBOL Runtime utility panels is
not valid. The cursor is positioned at the field in error.

User response: Type a valid selection and press Enter.

ELA00305A Type a name, then press Enter

Explanation: A required field was left blank on one of
the Rational COBOL Runtime utility panels. The cursor
is positioned at the empty field.

User response: Type a valid name and press Enter.

ELA00306P CICS new copy was not successful for
program %01C08. Press F2.

Explanation: The CICS SET NEWCOPY command
was not successful for the specified part. The specified
part was requested on the Rational COBOL Runtime
New Copy panel.

User response: Press F2 to view message ELA00204I,
which contains the CICS response information from the
EXEC interface block (EIB). Verify that the part name is
correct. Refer to the CICS application programmers'
guide for an explanation of the EXEC interface block
(EIB) codes.

ELA00308P I/O error on error message queue. Press
F2.

Explanation: A CICS error occurred when attempting
to gain access to the error destination queue identified
on the Rational COBOL Runtime Diagnostic Print
panel.

User response: Press F2 to view message ELA00204I,
which contains the CICS response information from the
EXEC interface block (EIB). Verify that the error
destination name is correct. Refer to the CICS
application programmers' guide for an explanation of
the EXEC interface block (EIB) codes.

ELA00309A Error message queue was not found

Explanation: The error destination queue identified on
the Rational COBOL Runtime Diagnostic Print panel
was not found.

User response: Specify the correct error destination
queue name on the panel.

ELA00310A Type a valid response, then press Enter.

Explanation: A value that was not recognized was
specified in the field where the cursor is positioned.
Valid values are shown following the field on the form.

User response: Type a valid value in the field and
press Enter.

ELA00313I Default options are in effect for this
transaction

Explanation: You made a request to view the
diagnostic control options in effect for a specific
transaction. The options currently in effect for the
transaction are the default options.

User response: To exit, press F3. To change the
options for this transaction do as follows:
1. Type the new options
2. Select action 1
3. Press Enter

ELA00314I Error message queue was empty

Explanation: A request was made to print an error
message queue that does not contain any messages.

User response: None required.

ELA00315I Trace transaction list was updated
successfully

Explanation: The list of transactions you specified to
be traced has been processed successfully.

User response: None required.

ELA00316I Trace filter criteria updated successfully

Explanation: The list of trace filter criteria you
specified has been processed successfully.

User response: None required.

ELA00317P Service number is not valid

Explanation: The trace filter criteria contains a service
number that is not valid. For z/OS batch or IMS BMP,
if this error is detected during ELATRACE data set
parsing, the run unit ends.

User response: Do one of the following:

v For z/OS batch or IMS BMP, correct the service
number specification in the ELATRACE data set and
run the program again.

v For CICS or IMS/VS programs, correct the service
number.

230 IBM Rational COBOL Runtime Guide for zSeries

ELA00318P Tag in %01C08 is not valid

Explanation: The filter criteria contains a tag that is
not valid. Valid tags are FILTER, EFILTER, APPLS,
EAPPLS, SERVICES, and ESERVICES.

The run unit ends.

User response: Correct the tag specification and run
the program again.

ELA00319P Missing or misplaced tag in %01C08

Explanation: The filter criteria contains a missing or
misplaced tag.

The run unit ends.

User response: Correct the filter criteria and run the
program again.

ELA00320P Too many programs in %01C08

Explanation: The filter criteria contains too many
programs. The maximum number is 16.

The run unit ends.

User response: Reduce the number of programs or
remove all program filter criteria, then run the program
again.

ELA00321P Too many services in %01C08

Explanation: The filter criteria contains too many
services. The maximum number is 32.

The run unit ends.

User response: Reduce the number of services or
remove all service filter criteria, then run the program
again.

ELA00322P One or more filters has a invalid value

Explanation: One or more codes entered for the
DATASTREAM, TRACETOFILE, APPSTMT, SQLIO,
SQLERR or IDUMP filters is not valid. The valid code
that is entered must be either Y (yes) or N (no).

For z/OS batch or IMS BMP, the run unit ends.

If you are defining filters online for z/OS CICS or
IMS/VS, the filter containing the value that is not
correct is highlighted.

User response: Do one of the following:

v For z/OS batch or IMS BMP, specify either Y or N
for these filters and run the program again.

v For CICS or IMS/VS, type one of the valid values for
the highlighted filter as shown on the form, then
press Enter.

ELA00323P I/O error on storage queue %01C08.
Press F2.

Explanation: An error was received when attempting
to access a temporary storage queue in the diagnostic
message print utility. Press F2 to view message
ELA00204I, which contains response codes from the
CICS EXEC interface block (EIB).

User response: Refer to the CICS application
programmers' guide for an explanation of the codes.

ELA00324P Error reading trace control record. Press
F2.

Explanation: An error was encountered when
attempting to read or write to the trace control record
in CICS. Press F2 to view more information.

For z/OS CICS, message ELA00204I is displayed,
which contains response codes from the CICS EXEC
interface block (EIB).

User response: Review the accompanying error
messages.

ELA00325P Error opening %01C08

Explanation: An error was encountered when
attempting to open the specified data set.

User response: Make sure that the data set has the
correct attributes.

ELA00326P Error reading %01C08

Explanation: An error was encountered when
attempting to read the specified data set.

User response: Make sure that the data set has the
correct attributes.

ELA00342A The maximum number of copies already
exists for the DataTable

Explanation: The maximum number of copies of a
DataTable that can be used in a CICS region at one
time is 5. The request for a new copy of the DataTable
was rejected.

User response: Old copies of a DataTable that are in
use are freed when all the transactions that are using
the DataTable end. Retry the new copy request later.

ELA00363P An incompatible terminal configuration
change has been detected

Explanation: Rational COBOL Runtime detected a
change to a terminal that is different from the previous
terminal on which the program was running. Changing
terminal configurations while a program is running is
not supported.

The run unit ends.

Appendix. Rational COBOL Runtime Messages 231

User response: Restart the program.

ELA00364I Snap dump is in progress

Explanation: This is an informational message which
is displayed on the screen to inform you that a problem
has occurred and that a snap dump is being taken.

User response: The snap dump could take a while.
When the snap dump is complete, a Rational COBOL
Runtime error panel is generally displayed with
messages indicating what went wrong.

ELA03001I F3=EXIT F8=CONTINUE

Explanation: None.

User response: None required.

ELA03002I F3=EXIT

Explanation: None.

User response: None required.

ELA03003I CLEAR=EXIT

Explanation: None.

User response: None required.

ELA03004I PF3=EXIT PF8=FORWARD

Explanation: None.

User response: None required.

ELA03005I PF3=EXIT

Explanation: None.

User response: None required.

ELA03006I PA1=CONTINUE

Explanation: None.

User response: None required.

ELA03007I IBM Rational COBOL Runtime

Explanation: None.

User response: None required.

ELA09937I Function name %01C48

Explanation: This message provides the name of the
function in which a problem occurred. Other related
messages provide the information about the actual
cause of the error.

User response: None required.

ELA09938P An error occurred when trying to invoke
a service function.

Explanation: Rational COBOL Runtime was unable to
transfer control to the specified service function.

User response: Make sure that the service is available
to your program and you specified the correct function
name.

ELA09939P Service binding must be a web binding.

Explanation: You specified a service binding, but
when Rational COBOL Runtime tried to invoke the
binding, it was not a web binding.

User response: Correct the binding and regenerate.

ELA09940I Binding Key: %01C75.

Explanation: This message provides the service
binding key for which a problem occurred. Other
related messages provide the information about the
actual cause of the error.

User response: None required.

ELA09941P An error occurred when trying to invoke
a Web Service function, JNI setup error
%01D06.

Explanation: A problem occurred transferring control
to a service function in the iSeries® environment.

User response: Verify that you meet the requirements
in the "Special considerations for generating EGL or
web services in iSeries environments" help topic.

ELA09942I Service property name %01C48

Explanation: This message provides the service
property name in which a problem occurred. Other
related messages provide the information about the
actual cause of the error.

User response: None required.

ELA09943E Required service property does not exist
in service module %01C08

Explanation: The required service property does not
exist in the service module. Message ELA09942I
provides the name of the service property that was
required.

User response: Make sure you are using the correct
service property name.

232 IBM Rational COBOL Runtime Guide for zSeries

ELA09944I Entry point name %01C48

Explanation: This message provides the name of the
entry point in a service in which a problem occurred.
Other related messages provide the information about
the actual cause of the error.

User response: None required.

ELA09945E Cannot find entry point in service
module %01C08

Explanation: The requested entry point does not exist
in the service module Message ELA09944I provides the
name of the entry point that was requested.

User response: Make sure you are using the correct
entry point name.

ELA09946E Reference target cannot be resolved in
service module %01C08

Explanation: The reference target does not exist in the
service module Message ELA09948I provides the name
of the reference target that was requested.

User response: Make sure you are using the correct
reference target name.

ELA09947E Component reference missing target in
service module %01C08

Explanation: The component reference does not exist
in the service module Message ELA09949I provides the
name of the component reference that was requested.

User response: Make sure you are using the correct
component reference name.

ELA09948I Reference name %01C48

Explanation: This message provides the reference
name in a service in which a problem occurred. Other
related messages provide the information about the
actual cause of the error.

User response: None required.

ELA09949I Component name %01C48

Explanation: This message provides the component
name in a service in which a problem occurred. Other
related messages provide the information about the
actual cause of the error.

User response: None required.

ELA09951I Service target name %01C48

Explanation: This message provides the service target
name in a service in which a problem occurred. Other
related messages provide the information about the
actual cause of the error.

User response: None required.

ELA09952E Cannot find service target in service
module %01C08

Explanation: The service target does not exist in the
service module Message ELA09951I provides the name
of the service target that was requested.

User response: Make sure you are using the correct
service target name.

ELA09954E Type cast exception

Explanation: A type cast exception occurred in the
program. This message provides the exception text.
Other related messages provide the program name, the
function name, the EGL line number, and the exception
code.

User response: Modify the program to prevent the
exception from occurring or to handle the exception.
Generate the program again.

ELA09955E Index out of bounds exception

Explanation: An index out of bounds exception
occurred in the program. This message provides the
exception text. Other related messages provide the
program name, the function name, the EGL line
number, and the exception code.

User response: Modify the program to prevent the
exception from occurring or to handle the exception.
Generate the program again.

ELA09956E Invocation exception

Explanation: A invocation exception occurred in the
program. This message provides the exception text.
Other related messages provide the program name, the
function name, the EGL line number, and the exception
code.

User response: Modify the program to prevent the
exception from occurring or to handle the exception.
Generate the program again.

ELA09958E Service binding exception

Explanation: A service binding exception occurred in
the program. This message provides the exception text.
Other related messages provide the program name, the
function name, the EGL line number, and the exception
code.

User response: Modify the program to prevent the
exception from occurring or to handle the exception.
Generate the program again.

Appendix. Rational COBOL Runtime Messages 233

ELA09959E Service invocation exception

Explanation: A service invocation exception occurred
in the program. This message provides the exception
text. Other related messages provide the program
name, the function name, the EGL line number, and the
exception code.

User response: Modify the program to prevent the
exception from occurring or to handle the exception.
Generate the program again.

ELA09960E SQL exception

Explanation: An SQL exception occurred in the
program. This message provides the exception text.
Other related messages provide the program name, the
function name, the EGL line number, and the exception
code.

User response: Modify the program to prevent the
exception from occurring or to handle the exception.
Generate the program again.

ELA09961E MQ I/O exception

Explanation: An MQ I/O exception occurred in the
program. This message provides the exception text.
Other related messages provide the program name, the
function name, the EGL line number, and the exception
code.

User response: Modify the program to prevent the
exception from occurring or to handle the exception.
Generate the program again.

ELA09962E File I/O exception

Explanation: A file I/O exception occurred in the
program. This message provides the exception text.
Other related messages provide the program name, the
function name, the EGL line number, and the exception
code.

User response: Modify the program to prevent the
exception from occurring or to handle the exception.
Generate the program again.

ELA09963E DL/I exception

Explanation: A DL/I exception occurred in the
program. This message provides the exception text.
Other related messages provide the program name, the
function name, the EGL line number, and the exception
code.

User response: Modify the program to prevent the
exception from occurring or to handle the exception.
Generate the program again.

ELA09964E User thrown exception

Explanation: A user thrown exception occurred in the
program. This message provides the exception text.
Other related messages provide the program name, the
function name, the EGL line number, and the exception
code.

User response: Modify the program to prevent the
exception from occurring or to handle the exception.
Generate the program again.

ELA09965E Runtime exception

Explanation: An error occurred in the EGL runtime
server.

User response: Review the other messages associated
with this message to determine the cause of the
problem.

ELA09966E No such library function with specified
signature exception

Explanation: The library does not provide the function
or variable requested by the program. Possible causes
are as follows:

v The function signature does not exist in the library. A
function signature consists of the combination of the
function name, parameter types, and return value
types.

v The function signature exists in the library, but is
marked private so that it is not available for use
outside the library.

v A variable does not exist in the library, or was
marked private so that it is not available for use
outside the library.

User response: Change the library or program so that
they agree on the function signature or variable name.
If necessary remove the private modifier from the
function or variable so that it can be accessed from
outside the library.

ELA09967E Exceeded max size on array exception

Explanation: A dynamic array exceeded its maximum
specified size.

User response: If the program does not specify a
maximum size for the dynamic array, review the
program logic to determine why the array has grown
beyond the system maximum. If the program specifies
a maximum size for the dynamic array, either increase
the maximum size or review the program logic to
determine why the array has grown beyond the
specified maximum. Use the EGL debugger to step
through the program logic.

234 IBM Rational COBOL Runtime Guide for zSeries

ELA09968E Append arrays of mismatched size
exception

Explanation: The program attempted to append one
dynamic array to another, but the arrays differ in either
the type or size of their elements.

User response: Change the program logic so that the
dynamic arrays are of the same type or have the same
element size.

ELA09969E Insufficient heap memory exception

Explanation: The program ran out of memory.

User response: Try to resolve the problem using one
of the following methods:

v For z/OS batch, increase the REGION parameter in
the runtime JCL.

v For any COBOL environment, set the HEAPSIZE
symbolic parameter to 16384 and generate the first
program in the run unit again. Note that HEAPSIZE
must be set for the first program in the run unit,
which is not necessarily the program which ran out
of memory.

– If increasing the HEAPSIZE does not resolve the
problem, review your program logic to determine
why the program requires so much memory. Use
the EGL debugger to step through the program
logic.

– If increasing the HEAPSIZE resolves the problem,
contact IBM support to determine if you need to
apply maintenance for your EGL server product.

ELA09970E Attempting to access an uninitialized
dynamic array exception

Explanation: The program attempted to access a
dynamic array that has not been initialized.

User response: Change the program logic to ensure
that the dynamic array is initialized. You can initialize
the dynamic array by using the new operator or a set
value block at declaration time.

ELA09971E Invalid format used in format function
call exception

Explanation: The program invoked one of the
formatting functions with an invalid format mask. The
functions for which this error can occur include:
strLib.formatDate(), strLib.formatTime(),
strLib.formatTimeStamp(), and
strLib.formatNumber(). The mask can be specified in
several ways including the following:

v As the format argument for the system function

v In a system variable

For example, for strLib.formatDate(), you can specify
the date format mask by including the optional second

argument for the system function or by setting the
strLib.defaultDateFormat system variable.

User response: Change the program logic to use a
valid format mask.

ELA09972E Null value exception

Explanation: A null value exception occurred in the
program. This message provides the exception text.
Other related messages provide the program name, the
function name, the EGL line number, and the exception
code.

User response: Modify the program to prevent the
exception from occurring or to handle the exception.
Generate the program again.

ELA09973I Condition code %01C04

Explanation: An exception occurred in the program.
This message provides the exception code. Other
messages provide the program name, the function
name, the EGL line number, and the exception text.

User response: None required

ELA09974E Unhandled exception occurred.

Explanation: An exception occurred in the program.
This message provides the EGL line number within the
generated COBOL program. Other messages provide
the program name, the function name, the exception
code, and the exception text.

User response: Modify the program to prevent the
exception from occurring or to handle the exception.
Generate the program again.

ELA09973I Condition code %01C04

Explanation: An exception occurred in the program.
This message provides the exception code. Other
messages provide the program name, the function
name, the EGL line number, and the exception text.

User response: None required.

ELA09974E Unhandled exception occurred. EGL
line: %01C06

Explanation: An exception occurred in the program.
This message provides the EGL line number within the
generated COBOL program. Other messages provide
the program name, the function name, the exception
code, and the exception text.

User response: Modify the program to prevent the
exception from occurring or to handle the exception.
Generate the program again.

Appendix. Rational COBOL Runtime Messages 235

FZE messages

FZE10014I ABEND %01C04 HAS OCCURRED,
TRAN= %02C04 %03C08 %04D05

Explanation: CICS has detected an abend in the
specified transaction. The time and date the abend was
detected is listed. This message appears in the CSMT
queue. If the abend is an ATNI, then the following
information will also appear:

DATASTREAM FROM LAST TD QUEUE RECORD READ:
data in hex format... *data in character format*

DATASTREAM SENT TO THE DEVICE:
data in hex format... *data in character format*

The above information shows the last transient data
queue record read, as well as the data sent to the
device which caused the ATNI abend. The data appears
in both hex and character format, much like the data
would appear in a CICS transaction dump.

User response: The Rational COBOL Runtime print
transaction continues to run. Determine the cause of the
CICS abend and run the transaction again if desired.

FZE10040I PRINT TRANSACTION NOT
STARTED FROM TRANSIENT DATA

Explanation: The Rational COBOL Runtime print
transaction (program FZETPRT) received control for
other than a transient data queue trigger level. Probable
cause: XSPP entered at a terminal.

User response: Contact your system administrator.

FZE10060P PARAMETER ERROR

Explanation: One or more of the input parameters
was specified incorrectly.

User response: If you were initializing a file, check the
parameter list you specified. Correct it and try the
procedure again. This message should not occur during
the installation procedure. If this error occurs during
installation, contact the IBM Support Center for
assistance.

FZE10061P ERROR OPENING %01C08 REG
15=%02X03, ERR=%03X03

Explanation: An error occurred while attempting to
open the named VSAM file.

User response: Look up the return code in register 15
and the feedback (or reason) code in the appropriate
VSAM manual for your operating environment. Correct
the problem and try this procedure again.

FZE10062P ERROR WRITING %01C08 REG
15=%02X03, ERR=%03X03

Explanation: An error occurred while attempting to

write to the specified VSAM file.

User response: Look up the return code in register 15
and the feedback (or reason) code in the appropriate
VSAM manual for your operating environment. Correct
the problem and try this procedure again.

FZE10064I SUCCESSFUL COMPLETION

Explanation: This step in the installation procedure
FZEZVCPO finished correctly.

User response: None required.

FZE10065I RECORDS READ: %01D08

Explanation: This shows the number of records read
from the source statement library or from the system
logical unit SYSIPT.

User response: None required

FZE10066I RECORDS WRITTEN: %01D08

Explanation: The indicated number of records were
written to the VSAM output file.

User response: None required.

FZE10067I FILE %01C08 ALREADY LOADED

Explanation: The specified output file has already
been loaded or initialized. This message occurs when a
file is being initialized or conditionally loaded.

User response: None required.

FZE10068P SOURCE LIB I/O ERROR FOR FILE
%01C08

Explanation: There was an error reading from the
specified input file.

User response: Check the listings for the return codes
from the previous steps of the installation procedure to
determine if the source statement library installed
correctly. If the return code was not zero, correct the
problem and run the previous step again. Then run this
step again.

FZE10069P MISSING SOURCE MEMBER %01C08

Explanation: The specified source library member
necessary for input to this step in the installation
procedure is missing.

User response: Check the listings for the return codes
from the previous steps of the installation procedure to
determine if the source statement library installed
correctly. If the return code was not zero, correct the

236 IBM Rational COBOL Runtime Guide for zSeries

problem and run the previous step again. Then run this
step again.

PRM messages

PRM00001P Invalid parameter group name %01C08

Explanation: The parameter group name specified is
not valid. Parameter group names may be 1 through 8
alphanumeric characters.

User response: Correct the parameter group name and
retry the request.

PRM00002I New parameter group being defined

Explanation: You have entered a parameter group
name which has not been previously defined. You may
enter the parameters for the new parameter group to
complete this definition. If you do not enter any
parameters and you press Enter to save the group, then
an empty group will be created.

User response: None required.

PRM00003P Invalid selection character

Explanation: You are have entered a selection code
which is not valid. Valid selection codes are:

'S' Select a parameter group for update.

'D' Delete an existing parameter group.

User response: Correct the selection character and
retry the request.

PRM00004P Already at top or bottom of list

Explanation: You attempted to do one of two things:

v Scroll forward on the last screen of the list

v Scroll backward on the first screen of the list.

No scrolling occurred.

User response: Do not attempt to scroll beyond the
start or the end of the list.

PRM00005I Function key not supported

Explanation: You have used a function key that is not
supported by the facility. The keys which are available
are described in the top portion of the form.

User response: Check the description of what
functions are available, and use a different function key.

PRM00006I Specified parameter group(s) not found

Explanation: You have requested to view a list of
parameter groups, and no parameter group exists for
the search conditions you have specified.

If you entered a question mark ('?') to view a list of all

parameter groups, then your parameter group file is
empty.

User response: If you have made an error, then correct
the problem and retry the request.

PRM00007P Unexpected I/O error occurred, RC =
%01C08

Explanation: You have attempted an operation against
the parameter group file and an I/O error has
occurred. The operation was not completed.

This error indicates some damage has occurred to the
parameter group file. This error should be corrected
before any further maintenance to your parameter
groups is attempted.

User response: Contact your Systems Programmer.

PRM00008P File is full, parameter group cannot be
added

Explanation: You have attempted to add a parameter
group to your parameter group file, which is full. The
parameter group has not been added.

User response: Review your existing parameter
groups to determine if any of them can be deleted.
Deleting existing parameter groups will make room for
new groups that you want to add. If you are not able
to delete any existing parameter groups, then the
parameter group file must be redefined to allow more
entries.

PRM00009I Operation(s) successfully completed

Explanation: You have successfully completed the
operation requested. The possible operations are:

v Addition of a new parameter group.

v Modification of an existing parameter group.

v Deletion of an existing parameter group.

User response: None required.

PRM00010P Parameter group file EZEPRMG not
found

Explanation: Either the name was specified incorrectly
or the file is not properly defined to the system.

User response: Ensure the parameter group file is
defined and associated with EZEPRMG as the FILE
entry name on CICS systems.

PRM00011P Unable to connect to parameter group
file EZEPRMG

Appendix. Rational COBOL Runtime Messages 237

Explanation: The Parameter Group Utility was unable
to connect to the parameter group file. The file must be
associated and defined to the system.

User response: Verify the file name specified has been
defined and associated with EZEPRMG as the FILE
entry name on CICS systems.

238 IBM Rational COBOL Runtime Guide for zSeries

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this
documentation in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any IBM intellectual
property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:
IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:
Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1994, 2012 239

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:
Intellectual Property Dept. for Rational Software
3600 Steeles Avenue East
Markham, ON
Canada L3R 9Z7

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE: This information contains sample application programs in
source language, which illustrate programming techniques on various operating
platforms. You may copy, modify, and distribute these sample programs in any
form without payment to IBM, for the purposes of developing, using, marketing or
distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are written.
These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. 2000, 2011. All rights reserved.

240 IBM Rational COBOL Runtime Guide for zSeries

If you are viewing this information in softcopy, the photographs and color
illustrations may not appear.

This IBM Rational COBOL Runtime Guide for zSeries documents the intended
Programming Interfaces that allow the customer to write programs to obtain the
services of Rational Business Developer.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at http://www.ibm.com/
legal/copytrade.html.

The following terms are trademarks of other companies:

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Microsoft, Windows, and Windows NT are trademarks or registered trademarks of
Microsoft Corporation.

Notices 241

242 IBM Rational COBOL Runtime Guide for zSeries

Index

Special characters
/FORMAT command 111
/HOLD command 111
/MODIFY command 110
/WORKDBType build descriptor option

IMS 13

A
abend

ASPE
CICS 39

codes
CICS 185, 195
COBOL 193
IMS runtime 194
non-CICS environments 187
preparation 163
system 191

dumps
COBOL 151
Rational COBOL Runtime 151

recovery considerations
z/OS 45, 48, 49, 57, 58

activating trace sessions
CICS 156

adding
file name to the CICS file control table

z/OS 42
job control statements

z/OS 41
addressing, extended 31
alternate index, defining 28
alternate PCB, using 52
American National Standards printer

control character
z/OS 33, 35

AMODE 6, 7
analyzing

detected errors 148
application

load module storage for Rational
COBOL Runtime 5

plan for DB2 14
applying maintenance to

Rational COBOL Runtime 3
ASA (see also American National

Standards printer control character) 35
ASPE abend, preventing 39
attributes for DBCS, hardware 31

B
backing up data 32
backup, maintaining copies of production

libraries 118
batch

print services program 79

BIND
command

data set 72
default 78
defining 78

DB2 programs 32
precompile messages 164

buffer size, printing
CICS 37

build descriptor
and compiler options that affect

performance 27
options

commentLevel 149
errorDestination 140, 145, 147
imsFastPath 140, 193
imsLogID 140, 146
language code 145, 146, 148
mfsDevice 193, 194
mfsExtendedAttr 193, 194
mfsIgnore 193, 194
mfsUseTestLibrary 193
performance considerations 27
restoreCurrentMsgOnError 140
spaSize 53, 108
targetNLS 192
trace 155

output files 74

C
catastrophic error 143
cautions

empty KSDS data set, VSAM
restriction 30

PRTMPP parameter, line skip
malfunction 37

CEDA transaction, RDO 91
change or view

defaults - ELAC04 128
options - ELAC02 126

checking
access authorization

z/OS 32
database authorization

CICS 32
IMS 57

CICS
abend codes 195
activating trace sessions 156
database

recovery considerations 45
DB2 considerations 10, 45
destination control table (DCT)

printing, DBCS 38
sample entry 44
transient data queue name 35

diagnostic control options 126
DL/I considerations 9, 45
ELAC transaction 126
ELAM transaction 121

CICS (continued)
ELAN transaction 122
ELAU transaction 124
EZEZ transaction 35
file descriptions 33
installation considerations 9
mode, pseudoconversational,

residency consideration 40
monitoring and tuning 10
new modules 94
parameter group

print file 33
parameter group, creating and

maintaining 129
PCT (program control table), printing,

DBCS 38
performance

considerations 39
preparation 91
PRIN transaction 35
print destination, specifying in

DCT 44
printing

buffer size 37
DBCS (double-byte character

set) 35, 38
DCT (destination control table) 35
destination control table

(DCT) 35, 44
double-byte character set

(DBCS) 35
EZEZ transaction 35
file description 33
form-feed 35
FORMFD=NO parameter 35
FZETPRT program 36, 44
parameter, PRTTYP 38
PCT (program control table),

FZETPRT program 38
PRIN transaction 35
printer destination 44
program control table (PCT) 38,

44
PRTBUF parameter 36
PRTMPP parameter 36
PRTTYP parameter 36
SEND command 37
terminal control table (TCT),

entry 44
transient data queue 44

processing mode
types 34

program control table (PCT)
DTB=YES and DBP value 44
printing, DBCS 38

pseudoconversational
processing mode 40
programs and residency 40

residency
considerations 39, 40
general rules 40

© Copyright IBM Corp. 1994, 2012 243

CICS (continued)
resource tables 91
security considerations 10
spool files 11
startup JCL 94
storage facilities used by Rational

COBOL Runtime 7
system considerations 33
temporary storage queues for Rational

COBOL Runtime 12
terminal control table (TCT),

entry 44
terminal printing 35
transaction

EZEZ 35
PR01 transient data queue 44
PRIN 35

transactions, passing transient data
between 44

transient data queue 35
utilities

(see also CICS, utilities) 121
diagnostic control facility,

ELAM 121
diagnostic control options,

ELAC 126
diagnostic message printing,

ELAU 124
menu 10
new copy utility, ELAN 122

CICS, PRGM transaction 131
CICS, utilities, change diagnostic control

options 126
CICS, utilities, default diagnostic control

options 128
CICS, utilities, parameter group utility,

PRGM 131
CICS, utilities, PRGM, parameter group

utility 131
CICS, utilities, view diagnostic control

options 126
CICS/ESA

monitoring and tuning 10
clearing records from databases 59
client/server 93
CLIST

modifying 97
templates 97

CMPAT parameter, IMS 52
COBOL

abend codes 193
abend dumps 151
abends under CICS 196
DATA compiler option 6, 7, 11
status key values 182
WSCLEAR option 16

COBOL dynamic storage
for Rational COBOL Runtime 6

codes
abend, IMS 194
return

Rational COBOL Runtime 171
SQL 178
sysVar.errorCode 167, 170

common system return codes 167
compatibility considerations,

sysVar.returnCode 167

compiler options that affect
performance 27

considerations
batch

DB2 48
DL/I 48
program runtime support 48
system 47

customization 15
database integrity

DB2, CICS 45
DB2, IMS 57
IMS 54

database recovery
IMS 54

DB2
CICS 45

DB2 database recovery
CICS 45
IMS 57

DL/I
CICS 45
IMS 58
z/OS batch 48

DL/I database integrity and recovery
CICS 45
IMS 58
z/OS batch 49

message format services 64
performance

CICS 39
compiler options 27
IMS 54, 56
link pack area 55

printing
IMS 53

recovery
IMS 54

residency
CICS 39

system
backing up data 32
CICS 33
DBCS 31
extended addressing 31
IMS 51

tuning IMS 57
z/OS/XA 31

control block 152
control character, American National

Standards, printer 33
control region in IMS 13
controlling error reporting

CICS 140
IMS 140

conversational processing mode,
CICS 34

creating
MFS control blocks 109

customizing
JCL procedures 16
Rational COBOL Runtime 15

D
DATA compiler option 6, 7, 11, 12

data file
backing up 32
defining 41
program, defining 28

data queue
extrapartition 44
intrapartition 44
transient 43

data set
bind command 72
CICS

PCT entries 73
PPT entries 73

DB2 database request module 72
DBRMLIB 72
EZEBIND 72
EZEJCLX 72, 117
EZEPCT 73
EZEPPT 73
EZEPRINT 47, 101, 114
EZESRC 73
load library 73
loading KSDS files 30
object library 73
SYSLIN 73
SYSLMOD 73
user 72

database
expanding 60
multiple

work 63
request module, DB2 72
work

clearing records 58
expanding 60
maintaining 58

database authorization
checking

IMS 57
z/OS 32

database integrity and recovery
considerations

DB2
CICS 45
IMS 57

DL/I
CICS 45
IMS 58
z/OS batch 49

IMS 54
DB Tools product 57
DB2

checking authorization
IMS 57
z/OS 32

considerations
CICS 10, 45
IMS 12
z/OS batch 9

database
request module data set 72
table space 61, 62

database integrity and recovery
considerations

CICS 45
IMS 57

244 IBM Rational COBOL Runtime Guide for zSeries

DB2 (continued)
precompile

messages 164
program plan 14
programs

bind 32
work database

clearing records 59
expanding the table space 61
IMS 13
multiple 63

DBCS (double-byte character set)
data on a non-DBCS terminal 112
hardware attributes 31
printing

CICS 35, 38, 44
DBRMLIB 72
DCAPRMG file, parameter group for

FZETPRT 36
DCT (destination control table)

entries 92
printing, DBCS 38
sample entry 44
transient data queue 35
trigger level 35

DD statements by file type 98
deactivating a trace session 161
default

print destination, IMS 53
defining

alternate index 28
data files 41
ESDS (serial) data set 28
KSDS (indexed) data set 28
program data files 41
program specification block (PSB)

IMS 52
RRDS (relative) data set 28
transient data

extrapartition 44
intrapartition 44

transient data files
extrapartition 44
intrapartition 44

transient data queues
extrapartition 43, 44
intrapartition 43, 44

VSAM data files 28
deleting old records from the work

database 58
descriptions

CICS files 33
IMS files 51

destination control table (DCT)
entries 92
printing, DBCS 38
sample entry 44
transient data queue 35
trigger level 35

destination, default print, IMS 53
detecting errors 139
determining position in program 153
DFHAC2016 messages 195
DFHAC2206 messages 195
DFS057I error message 193
DFS064 error message 193
DFS182 error message 193

DFS2082 error message 113, 193
DFS2766I error message 113, 194
DFS555I error message 112, 193
diagnosing problems 139
diagnostic control

facility
CICS utilities 121

options
change or view defaults 128
change or view options 126
ELAC transaction 126

diagnostic message print utility,
ELAU 124

disk storage requirements
for Rational COBOL Runtime 8

DL/I
considerations

CICS 9, 45
IMS 58
z/OS batch 9, 48

integrity and recovery considerations
CICS 45
IMS 58
z/OS batch 49

status codes 180
work database

clearing records 59
expanding the database 60
in IMS 13
multiple 63

double-byte character set (DBCS)
hardware attributes 31
printer 44

DSNX100I messages 164
dumps

snap, listing file on IMS 51
dynamic

interface plan 32
storage utilization in Rational COBOL

Runtime 7

E
ELA2SSQL module 55
ELA2SSQX module 55
ELA2SSQY module 55
ELAC, diagnostic control options 126
ELAC02 panel, change or view

options 126
ELAC04 panel, change or view

defaults 128
ELACJWKD member 63
ELADIAG file 51
ELAM, CICS utilities menu 121
ELAN, new copy utility 122
ELANCccc module 55
ELAPCB macro 52
ELAPRINT system output file 47, 51
ELARPRTM load module 55
ELARPRTR load module 55
ELARSDCB load module 55
ELASNAP file 51
ELAU, diagnostic message printing

utility 124
ELAWKJC2 member 59
ELAWKJCD member 59
ELAWORK work database PCB 52

ELAWORK2 DL/I work database 63
emulating IBM 3270 devices 31
error

detection 139
message

file 51
panel 144
reporting 139

IMS 140
in IMS 112
summary 141

errorDestination message queue 145
ESDS (serial) define cluster 28
expanding

the table space (DB2) 61
work database 60

express alternate PCB 52
extended addressing considerations

z/OS 31
external work file, backing up 32
extrapartition transient data, defining 44
EZEBIND data set 72
EZEDESTP special function word 47
EZEJCLX data set 72
EZEPCT data set 73
EZEPPT data set 73
EZEPRINT data set

IMS 53
specify as PRO1 44

EZEPRMG file
CICS 33
parameter group for FZETPRT 36

EZESRC data set 73
EZETRACE data set 47
EZEZ transaction 35, 44

F
FCT (file control table)

entries 93
user data file 42

file
control table (FCT)

described 93
default message queue, IMS 51
description

CICS 33
IMS 51

descriptions 33
error message 51
from generation 74
parameter group 33
snap dump listing, IMS 51
system output 47
trace 47

file control table (FCT)
entries 93
user data file 42

form feed
order (see American National

Standards printer control
character) 35

printing 35
FORMFD parameter

option=NO, forms alignment 35
parameter group for PRIN or

EZEZ 38

Index 245

FORMFD parameter (continued)
used with FZETPRT program 36

FormGroup
format module 79

function
new copy 39
preload, IMS 54

FZETPRT program 38
DBCS considerations 38
PRIN or EZEZ transaction 44
special parameter group 36
terminal printing support in CICS 35

FZEZREBO utility, initializing indexed
files 30

G
generated applications

with PL/I programs 16
generating

application control block 52

H
hardware attributes for DBCS 31

I
IBM 3270 device, emulating 31
IBM 5550 family of terminals 31
IDCAMS program

BLDINDEX command 28
DEFINE PATH command 28
loading indexed files 31
REPRO command 28, 30

IGYOP3091W error message 164
IGYOP3093W error message 165
IGYOP3094W error message 165
IGYPA3013W error message 165
IGYPG3113W error message 165
IGYPS2015I error message 164
IGYPS2023I error message 164
IGYSC2025W error message 165
improving

performance 56
library lookaside (LLA) 28
link pack area (LPA) 28
virtual lookaside facility (VLF) 28

response time 56
IMS

control region 13
database

authorization checking 57
integrity considerations 54
recovery considerations, DB2 57
recovery considerations, DL/I 54

DB2 considerations 12
default

message queue file 51
print destination 53

DL/I considerations 58
ELAPCB macro 52
error

controlling, generation
options 140

messages 112

IMS (continued)
error (continued)

reporting 112
file descriptions 51
HIPERSPACE buffer usage 56
installation considerations 12
integrity considerations, DB2 57
log format 146
logical unit of work 58
monitoring and tuning 13, 57
new modules 110
performance considerations 56
preload function 54
preloading

program modules 56
Rational COBOL Runtime

modules 55
preparation 107
processing modes 53
program specification block,

defining 52
residency considerations 54
runtime

abend codes 194
messages 193

security considerations 12
segmented mode 53
snap dump listing file 51
system considerations 51
system definition

batch program as an MPP 108
batch-oriented BMP program 109
general 13
interactive program 107
parameters 107
transaction-oriented BMP 109

system printing considerations 53
work database considerations

DB2 13
DL/I 13

IMS DC monitor facilities 13
IMS/ESA exploitation 12
IMS/VS, message format service (MFS)

Control Blocks 56
IMSPARS 57
indexed (KSDS) data set

define cluster 28
loading 30

installation considerations
preparing to install 3

integrity considerations, database
DB2

CICS 45
IMS 57

DL/I
CICS 45
IMS 58
z/OS batch 49

IMS 54
intrapartition transient data

defining 44

J
JCL

by environment 97

JCL (continued)
examples of runtime 102, 103, 104,

114, 115
modifying 97, 98
modifying runtime 98
tailoring before generation 97
templates 97

job stream data set
runtime 72

K
KSDS (indexed) define cluster 28

L
LE

runtime messages 192
library

backup 32
production copies, maintaining

backup 118
link pack area

loading 55
performance considerations 55

listing file
IMS, snap dump 51

load library data set 73
load module

preloading 55
storage for Rational COBOL

Runtime 5
storage for Rational COBOL Runtime

application 5
loading

modules into link pack area 55
logical unit of work (LUW)

IMS 57, 58

M
macro, ELAPCB 52
maintaining

backup copies of production
libraries 118

work database 58
maintenance, applying to

Rational COBOL Runtime 3
message

format services
considerations 64
description 31, 64

queue file, default, IMS 51
message format service (MFS) control

blocks in IMS 56
messages

DFHAC2016 195
DFHAC2206 195
DFS057I 193
DFS064 193
DFS182 193
DFS2082 113, 193
DFS2766I 113, 194
DFS555I 112, 193
DSNX100I 164
IGYOP3091W 164

246 IBM Rational COBOL Runtime Guide for zSeries

messages (continued)
IGYOP3093W 165
IGYOP3094W 165
IGYPA3013W 165
IGYPG3113W 165
IGYPS2015I 164
IGYPS2023I 164
IGYSC2025W 165
IMS runtime 193
preparation 163
runtime

IMS 193
z/OS 195

z/OS runtime 195
MFS

control blocks 109
mode

CICS execution, performance
considerations 40

processing
CICS 34
IMS 53

models
JCL 97

modifying
IMS system definition

parameters 107
JCL or CLISTs 97
runtime

JCL 98
modules

CICS 94
IMS 110
in memory 28
loading into link pack area 55
preloading 56

monitoring and tuning
CICS 10
IMS system 13, 57
performance 57

moving prepared programs
z/OS 117

multiple work databases 63

N
new copy

function 39
new copy utility 122
new copy utility, ELAN 122
new modules

CICS 94
IMS 110

nonsegmented processing mode,
CICS 34

O
object library data set 73
objects generated

application COBOL program 77
batch print services program 79
BIND command 78
FormGroup format module 79
from generation 74
online print services program 79

objects generated (continued)
runtime

JCL 77
table program 78

online print services program 79
option

preloading
program modules, IMS 56
Rational COBOL Runtime

modules, IMS 55
recovery 39
SPA 53

output of program generation 74

P
panels

Parameter Group Definition
(PRGM02) 132

Parameter Group Specification
(PRGM00) 131

panels, Parameter Group List Display
(PRGM01) 132

parameter
group associated with FZETPRT

program
DCAPRMG file 36
EZEPRMG file 36

resident 40
WORK in ELAPCB 52

Parameter Group Definition panel
(PRGM02) 132

parameter group file, EZEPRMG data set,
CICS 33

Parameter Group List Display panel
(PRGM01) 132

Parameter Group Specification panel
(PRGM00) 131

passing transient data between CICS
transactions 44

PCT (program control table)
entries 92
FZETPRT program 38

performance
considerations 27

CICS 39
general 15, 28
IMS 54, 56
IMS/ESA 56
z/OS batch 49

generation and compiler options 27
HIPERSPACE buffers for IMS 56
library lookaside (LLA) 28
limiting MFS control blocks 56
link pack area 28
monitoring and tuning

IMS 13, 57
preload modules 110
RES(YES) parameter, RDO DEFINE

PROGRAM command 92
tuning IMS 57
virtual lookaside facility (VLF) 28

Performance Analysis and Reporting
System (PARS) 57

PL/I programs 16
plan, DB2 32

PPT (processing program table)
entries 91

PR01 transient data queue 44
precompile messages

BIND 164
DB2 164

preloading
objects, IMS 54
print services

description 110
module 55
program 56

program 110
program modules 55, 56
Rational COBOL Runtime modules,

IMS 55
service module 55
table modules 55, 110

preparation
abend codes 163
messages 163

preparing
and running programs

CICS 91
IMS 107
z/OS batch 101

to install Rational COBOL Runtime 3
PRGM00 (Parameter Group List Display

panel) 132
PRGM00 (Parameter Group Specification

panel) 131
PRGM02 (Parameter Group Definition

panel) 132
PRIN transaction 33, 35, 44
print destination

CICS, specifying in DCT 44
default

IMS 53
print file, utilities 33
print services program

object of generation 79
preloading 56

printing
buffer size 37
CICS

considerations 33
file descriptions 33

CICS, destination control table
(DCT) 35

considerations
IMS 53

DBCS (double-byte character set),
printer 44

DCT (destination control table)
transient data queue name 35
trigger level 35

default, print destination 35
destination control table (DCT)

transient data queue name 35
trigger level 35

destination, using
sysLib.startTransaction() system
function 35

diagnostic information
CICS 147
IMS 145

EZEZ transaction 35

Index 247

printing (continued)
file descriptions, CICS 33
form-feed 35
FORMFD=NO parameter 35, 38
FZETPRT program 36
parameter

FORMFD 36, 38
group associated with FZETPRT

program 36
PRTBUF 36
PRTMPP 36, 37
PRTTYP 36, 38

PCT (program control table),
FZETPRT program 38

PR01 transient data queue 44
PRIN transaction 35
print destination, default 35
printer destination 44
program control table (PCT),

FZETPRT program 38
SEND command 37
sysLib.startTransaction() system

function for print destination 35
transient data

at a terminal device 44
transient data queue 35, 44

problem
diagnosis 139

processing
batch 47

processing mode
CICS

types 34
IMS 53

processing program table (PPT)
entries 91

production libraries, maintaining copies
for backup 118

profile block
program 152

program
bind DB2 32
data files, defining 28
entries 91
module, preloading 55
preloading 56
profile block 152
return codes 185

program communication block (PCB)
alternate 52
ELAPCB macro 52

program control table (PCT)
DTB=YES and DBP value 44
entries 92
FZETPRT program 38

program specification block (PSB)
defining 52
generation 52

PRTBUF parameter
specifying print buffer size 36
using with the FZETPRT program 36

PRTMPP parameter
specifying maximum print

positions 37
using with FZETPRT program 37

PRTTYP parameter
DBCS printing 38

PRTTYP parameter (continued)
using with the FZETPRT program 36

pseudoconversational
processing mode

CICS 34, 40

R
Rational COBOL Runtime

abend dumps 151
application load module storage 5
applying maintenance 3
COBOL dynamic storage 6
COBOL external storage for non-CICS

environments 6
control block 152
control options by transaction 126
customizing JCL procedures 16
DB2 considerations

CICS 10
IMS 12
IMS work database 13
z/OS batch 9

default control options 128
diagnostic control options 126
disk storage requirements 8
DL/I considerations

CICS 9
IMS work database 13
z/OS batch 9

dynamic storage 7
error 144
extended addressing 31
generated programs

using with PL/I programs 16
IMS/ESA exploitation 12
installation considerations

CICS 9
IMS 12
preparing to install 3

load module
reentrant 5
storage 5
storage estimates, statically

linked 6
new copy 122
performance considerations 15
security considerations

all systems 15
CICS 10
IMS 12

storage facilities for CICS, using 7
storage requirements 5
temporary storage queues 12
utilities

diagnostic control facility
(ELAM) 121

diagnostic control options
(ELAC) 126

diagnostic message printing utility
(ELAU) 124

for CICS 10
new copy (ELAN) 122

virtual storage requirements 5
work database space for segmented

applications 8

Rational COBOL Runtime (continued)
WSCLEAR option for COBOL,

specifying 16
Rational COBOL Runtime, utilities,

parameter group utility, PRGM 131
Rational COBOL Runtime, utilities,

PRGM, parameter group utility 131
RCT 93
RDO (resource definition online),

generation output 76
RDO CEDA transaction 91
recovery

options
specifying 39

recovery considerations
DB2

CICS 45
IMS 57

DL/I
CICS 45
IMS 58
z/OS batch 49

IMS 54
reentrant code 28
reentrant load module storage estimates

for Rational COBOL Runtime 5
relative (RRDS) define cluster 28
reporting

errors 139
problems 161

request module, DB2 72
residency

considerations
CICS 39
IMS 54

general rules, CICS 40
resident

parameter 40
programs 95

resource
control table 93
tables for CICS 91

Resource Measurement Facility II 57
response time, improving 56
return codes

Rational COBOL Runtime 171
SQL 178
system 167
sysVar.errorCode 167, 170

RMF 57
RRDS, data set definition 28
running

main programs under z/OS
batch 101

programs under IMS 111
running under

CICS 95
IMS

BMP with DB2 115
main batch as BMP 114
main program under BMP 113

z/OS batch
main batch with DL/I 103
main batch with no database 102
main batch with no DB2 102

runtime
JCL 77, 98

248 IBM Rational COBOL Runtime Guide for zSeries

runtime (continued)
job stream data set 72
messages

IMS 193
z/OS 195

messages, LE 192

S
sample JCL

BMP with DB2 115
IMS BMP program 114
z/OS batch with DB2 Access 102
z/OS batch with DB2 and DL/I 104
z/OS batch with DL/I Access 103
z/OS batch without DB2 102

saving storage space 55
security considerations

CICS 10
general 15
IMS 12

segmented processing mode
CICS 34
IMS 53

SEND command, printing 37
serial (ESDS) define cluster 28
service module, preloading 55
services, message format 31
sharing modules 55
snap dump listing file, IMS 51
spaSize build descriptor option 53, 108
spool files, CICS 11
SQL

considerations 32
return codes 178

starting
IMS programs

/FORMAT command
(transaction) 111

directly (main) 111
MPPs (transactions) 111

startup JCL for CICS 94
statistics, performance 57
status 13

codes
DL/I 180

key values, COBOL 182
storage requirements

for Rational COBOL Runtime COBOL
dynamic storage 6

subsystem ABEND dumps 151
support for DBCS terminals 31
sysLib.startTransaction() system function,

print destination 35
SYSLIN 73
SYSLMOD 73
SYSOUT system output file 47
SYSPRINT system output file 47
system

abend codes 191
considerations

CICS 33
general 27
IMS 51

definition, IMS 13
output file 47
return codes 167

SYSUDUMP system output file 47
sysVar.errorCode 167

compatibility considerations 167
return codes 170

T
table

modules, preloading 55
preloading 56
program 78
space

expanding 61, 62
requirements 61

TCT (terminal control table) 44
templates

CLIST 97
JCL 97

temporary storage queues 12
terminal control table (TCT) 44
terminal printing

CICS 35
trace facility 155
trace file 47
tracing

activating 156
deactivating 161

transaction
entries 92

transient data
defining extrapartition 44
printing 44
queue

defining 43
printing, CICS 35
TYPE=INTRA entry in DCT 35

tuning
IMS 13, 57

U
unit of work, logical

IMS 57, 58
user data set 72
using

data build descriptor option 11
generated applications with PL/I

programs 16
multiple work databases 63
remote files, CICS 43
using spool files 11

utilities
diagnostic control options

(ELAC) 121, 126
diagnostic message printing

(ELAU) 124
for CICS with Rational COBOL

Runtime 10
IMS diagnostic message print 135
new copy (ELAN) 122

utilities, diagnostic, message print utility,
CICS 124

utilities, parameter group utility,
PRGM 131

V
virtual storage

considerations and residency 40
requirements

Rational COBOL Runtime 5
VSAM

data set definition 28
defining an alternate index 28
file loading 30
indexed (KSDS) data set 28
relative (RRDS) data set 28
serial (ESDS) data set 28
status codes 181

W
warnings

empty KSDS data set, VSAM
restriction 30

PRTMPP parameter, line skip
malfunction 37

work database
clearing records 58
deleting old records 58
ELAPCB macro 52
expanding 60
IMS 13
maintaining 58
multiple 63
space for segmented applications 8

WORK parameter in ELAPCB 52
WSCLEAR option for COBOL 16

Z
z/OS

DB2 considerations for Rational
COBOL Runtime 9

DL/I considerations 9
DL/I considerations for Rational

COBOL Runtime 9
installation considerations 3
preparation 101
runtime messages 195

z/OS batch
DL/I considerations 48

z/OS/XA considerations 31

Index 249

250 IBM Rational COBOL Runtime Guide for zSeries

����

Product Number: 5655-R29

Printed in USA

SC31-6951-06

	Contents
	About This Document
	Who Should Use This Document
	Terminology Used in This Document

	Part 1. Preparing to Install
	Chapter 1. Preparing for the Installation of Rational COBOL Runtime
	Chapter 2. Storage Requirements for Rational COBOL Runtime
	Virtual Storage Requirements
	Rational COBOL Runtime Load Module Storage
	Load Module Storage
	COBOL Dynamic Storage
	Rational COBOL Runtime Dynamic Storage
	Storage Requirements for CICS
	Disk Storage Requirements for Rational COBOL Runtime
	Work Database Space For Segmented Programs

	Chapter 3. Installation Considerations
	z/OS Batch Considerations
	DL/I Considerations
	DB2 Considerations

	CICS Installation Considerations
	DL/I Considerations
	DB2 Considerations
	Security Considerations
	Monitoring and Tuning
	CICS Utilities
	Client / Server Processing Considerations
	Using the data Build Descriptor Option
	Modifying CICS Resource Definitions
	APF authorization
	Using Spool Files
	Terminal Considerations
	Temporary Storage

	IMS Installation Considerations
	IMS/ESA Exploitation
	DB2 Considerations
	Security Considerations
	Monitoring and Tuning
	IMS System Definition
	IMS Control Region
	Work Database
	DL/I Work Database Considerations
	DB2 Work Database Considerations

	Chapter 4. Customizing Rational COBOL Runtime
	General Customization Considerations for z/OS
	Customizing Rational COBOL Runtime
	Security Considerations
	Performance Considerations
	Customizing Build Scripts
	Modifying the Language Environment Runtime Option
	Using Generated Programs with PL/I Programs
	Installation and Language-Dependent Options for z/OS
	Creating a custom conversion table
	Changing the EGL System Libraries to Use Your Required Code Page

	Part 2. Administering on z/OS Systems
	Chapter 5. General System Considerations for z/OS Systems
	Considerations that Affect Performance
	Build Descriptor and Compiler Options
	Modules in Memory
	Files and Databases

	Defining and Loading VSAM Program Data Files
	Defining VSAM Data Sets
	Defining an Alternate Index

	Loading Data in the Files

	Support for DBCS terminals
	Extended Addressing Considerations for Rational COBOL Runtime
	DB2 Considerations
	Preparing Programs
	Checking Access Authorization

	Backing Up Data
	Customizing Rational COBOL Runtime

	Chapter 6. System Considerations for CICS
	Required File Descriptions
	Segmented and Nonsegmented Processing
	Using Transient Data Queues for Printing in z/OS CICS
	z/OS CICS terminal printing
	Special Parameter Group for the FZETPRT Program
	PRTBUF Parameter
	PRTMPP Parameter
	PRTTYP Parameter
	FORMFD Parameter

	CICS Entries for FZETPRT (DBCS only)

	Using the New Copy Function
	Specifying Recovery Options in CICS
	Considerations that Affect Performance
	Residency (Modules in Memory) Considerations
	Virtual Storage Considerations and Residency

	Work Database Temporary Storage Queue Considerations
	Terminal Printing

	Using and Allocating Data Files in CICS
	Defining and Loading VSAM Data Files
	Adding the Job Control Statements
	Adding a CICS FILE Resource Definition for a File

	Using Remote Files
	Defining Transient Data Queues
	Defining Intrapartition Transient Data
	Defining Extrapartition Transient Data

	Considerations for Using DB2 in CICS
	Associating DB2 Databases with CICS Transactions
	Recovery and Database Integrity Considerations

	Considerations for Using DL/I in CICS
	Recovery and Database Integrity Considerations

	Setting up the National Language

	Chapter 7. System Considerations for z/OS Batch
	Required File Descriptions
	Using VSAM Program Data Files in z/OS Batch
	Considerations for Using DB2 in z/OS Batch
	Recovery and Database Integrity Considerations

	Considerations for Using DL/I in z/OS Batch
	Defining the Program Specification Block (PSB)
	Recovery and Database Integrity Considerations

	Considerations for Calling CICS programs from z/OS batch
	Performance Considerations for z/OS Batch
	Runtime JCL

	Chapter 8. System Considerations for IMS
	Required File Descriptions
	Defining the Program Specification Block (PSB)
	Processing Modes
	Printing Considerations for IMS
	Recovery and Database Integrity Considerations
	Considerations that Affect Performance
	Residency Considerations and the IMS Preload Function
	Preloading Rational COBOL Runtime Modules
	Loading Rational COBOL Runtime Modules into the Link Pack Area
	Preloading Generated Programs

	Database Performance
	Limiting MFS Control Blocks
	Monitoring and Tuning the IMS System

	Considerations for Using DB2 in IMS
	Recovery and Database Integrity Considerations
	Checking Authorization

	Considerations for Using DL/I in IMS
	Recovery and Database Integrity Considerations

	Maintaining the Work Database in IMS
	Deleting Old Records from the Work Database
	DL/I Work Database
	DB2 Work Database

	Expanding the Work Database
	DL/I Work Database
	DB2 Work Database

	Supporting Multiple Work Databases
	DL/I Work Databases
	DB2 Work Databases

	Considerations for Message Format Services in IMS

	Part 3. Preparing and Running Generated Applications
	Chapter 9. Output of Program Generation on z/OS Systems
	Allocating Preparation Data Sets
	List of Program Preparation Steps after Program Generation
	Deploying generated code to USS

	Output of Generation
	Objects Generated for Programs
	Application COBOL Program
	Sample Runtime JCL
	Bind Commands

	Link Edit File
	CICS Entries
	Objects Generated for DataTables
	DataTable COBOL Program

	Objects Generated for FormGroups
	Online Print Services Program
	Batch Print Services Program
	FormGroup Format Module
	MFS Print Services Program
	MFS Source
	COBOL Copybook for MFS MID/MOD Layout

	Chapter 10. z/OS Builds
	z/OS Build Server
	Starting a z/OS Build Server
	Starting a USS Build Server
	Stopping servers
	Configuring a build server

	Working with Build Scripts
	Working with z/OS Build Scripts
	Writing a JCL build script
	File Name Conversions for z/OS

	Converting JCL to Pseudo-JCL

	Chapter 11. Preparing and Running a Generated Program in CICS
	Modifying CICS Resource Definitions
	Program Entries
	Transaction Entries
	Destination Control Table Entries
	File Control Table Entries
	DB2 Entries
	Using Remote Programs, Transactions, or Files

	CICS Setup for Calling CICS Programs from z/OS Batch
	CICS Setup for Calling z/OS Batch Programs in CICS
	Modifying CICS Startup JCL
	Making New Modules Available in the CICS Environment
	Making Programs Resident
	Running Programs under CICS
	Starting the Transaction in CICS
	Controlling Diagnostic Information in the CICS Environment
	Printing Diagnostic Messages in the CICS Environment

	Chapter 12. Creating or Modifying Runtime JCL on z/OS Systems
	Tailoring JCL before Generation
	Modifying Runtime JCL

	Chapter 13. Preparing and Running Generated Programs in z/OS Batch
	Running Main Programs under z/OS Batch
	Examples of Runtime JCL for z/OS Batch Programs
	Running a Main Basic Program with No Database Access
	Running a Main Basic Program with DB2 Access
	Running Main Basic Program with DL/I Access
	Running a Main Basic Program with DB2 and DL/I Access

	Recovery and Restart for z/OS Batch Programs

	Chapter 14. Preparing and Running Generated Programs in IMS/VS and IMS BMP
	Modifying the IMS System Definition Parameters
	Defining an Interactive Program
	Defining Parameters for a Main Basic Program as an MPP
	Defining Parameters for a Batch-Oriented BMP Program
	Defining Parameters for a Transaction-Oriented BMP Program

	Creating MFS Control Blocks
	Making New Modules Available in the IMS Environment
	Preloading Program, Print Services, and DataTable Modules
	Running Programs under IMS
	Starting a Main Program Directly
	Starting a Main Transaction Program Using the /FORMAT Command
	Running Transaction Programs as IMS MPPs
	IMS Commands
	Keyboard Key Operation
	DBCS Data on a Non-DBCS Terminal
	Error Reporting
	Responding to IMS Error Messages

	Running Main Basic Programs as MPPs

	Running a Main Basic Program under IMS BMP
	Examples of Runtime JCL for IMS BMP Programs
	Running a Main Basic Program as an IMS BMP Program
	Running a Main Basic Program as an IMS BMP Program with DB2 Access

	Recovery and Restart for IMS BMP Programs

	Chapter 15. Moving Prepared Programs to Other Systems from z/OS Systems
	Moving Prepared Programs To Another z/OS System
	Maintaining Backup Copies of Production Libraries

	Part 4. Utilities
	Chapter 16. Using Rational COBOL Runtime Utilities for z/OS CICS Systems
	Using the CICS Utilities Menu
	New Copy
	Diagnostic Message Printing Utility
	Diagnostic Control Options for z/OS CICS Systems
	Change or View Diagnostic Control Options for a Transaction
	Change or View Default Diagnostic Control Options

	Using the Parameter Group Utility for z/OS CICS Systems

	Chapter 17. Using Rational COBOL Runtime Utilities for IMS Systems
	IMS Diagnostic Message Print Utility

	Part 5. Diagnosing Problems
	Chapter 18. Diagnosing Problems for Rational COBOL Runtime on z/OS Systems
	Detecting Errors
	Reporting Errors
	Controlling Error Reporting
	Controlling Error Reporting in CICS
	Controlling Error Reporting in IMS Environments
	Controlling Error Reporting in z/OS Batch

	Error Reporting Summary
	Transaction Error
	Run Unit Error
	Catastrophic error
	Rational COBOL Runtime Error

	Using the Rational COBOL Runtime Error Panel

	Printing Diagnostic Information for IMS
	errorDestination Message Queue
	IMS Log Format
	Running the Diagnostic Print Utility

	Printing Diagnostic Information for CICS
	CICS Diagnostic Message Layout
	Running the Diagnostic Print Utility

	Analyzing Errors Detected while Running a Program

	Chapter 19. Finding Information in Dumps
	Rational COBOL Runtime ABEND Dumps
	COBOL or Subsystem ABEND Dumps
	Information in the Rational COBOL Runtime Control Block
	Information in a Program, Print Services, or DataTable Profile Block
	How to Find the Current Position in a Program at Time of Error

	Chapter 20. Rational COBOL Runtime Trace Facility
	Enabling EGL Program Source-Level Tracing with Build Descriptor Options
	Activating a Trace
	Activating a Trace Session for CICS or IMS/VS
	Activating a Trace Session for z/OS Batch or IMS BMP

	Deactivating a Trace Session
	Printing Trace Output
	Printing the Trace Output in CICS
	Printing the Trace Output in IMS/VS
	Printing the Trace Output in z/OS Batch or IMS BMP

	Reporting Problems for Rational COBOL Runtime

	Chapter 21. Common Messages during Preparation for z/OS Systems
	Common Abend Codes during Preparation
	MFS Generation Messages
	DB2 Precompiler and Bind Messages
	COBOL Compilation Messages

	Chapter 22. Common System Error Codes for z/OS Systems
	Common Error Codes
	System Error Code Formats for sysVar.errorCode
	Common System Error Codes in sysVar.errorCode
	EGL Error Codes

	Common SQL Codes
	Common DL/I Status Codes
	Common VSAM Status Codes
	OPEN request type
	CLOSE request type
	GET/PUT/POINT/ERASE/CHECK/ENDREQ request types

	COBOL Status Key Values

	Chapter 23. Rational COBOL Runtime Return Codes, Abend Codes, and Exception Codes
	Return Codes
	ABEND Codes
	CICS Environments
	IMS, IMS BMP, and z/OS Batch Environments
	Exception Codes

	Chapter 24. Codes from Other Products for z/OS Systems
	Common System Abend Codes for All Environments
	LE Runtime Messages
	Common COBOL Abend Codes
	Common IMS Runtime Messages
	Common IMS Runtime Abend Codes
	Common CICS Runtime Messages
	Common CICS Abend Codes
	COBOL Abends under CICS

	Part 6. Appendixes
	Appendix. Rational COBOL Runtime Messages
	Message Format
	ELA Messages
	FZE messages
	PRM messages

	Notices
	Trademarks

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

